Parallel Program Development
and Environments

This chapter describes software environments and program development techniques for parallel
computers. Ve first introduce envimnments..synchronintion, and execution modes. Then we describe
methods. for shared-variable and message-passing program development. The emphasis is on program
modularity, fast communication, load Z_ha!a'ncin'g,' and performance tuning.

An environment for parallel programming consists of hardware platforms, languages
supported, OS and software tools, and application packages. The hardware platforms vary
from shared-memory, message-passing, vector processing, and SIMD to dataflow computers. Usually, we
directly identify the machine models used, such as Cray Y-MP, BBN Butterfly, iPSC/8640, etc.

The last two decades have seen a revolution in massively parallel computer architecture, with system
performance reaching hundreds of teraflops and even petafiops. Huge advances in processors, memory,
display systems, system interconnects, and networking have contributed to this revolution, while the range
of applications of such systems has also grown enormously. Newer applications of such systems include
multimedia applications, data mining, and highly sophisticated simulations in science and engineering. As
system hardware has developed rapidly, the accompanying parallel programming environments have also
evolved and become more powerful; attempts have also been made to develop newer paradigms for parallel
programming. While the basic concepts of parallel program development will be studied in this chapter, we
shall review some of the more recent advances in Chapter 13.

11.1.1 Software Tools and Environments

Paraliel programming languages such as Linda and Strand 88 provided the minimal parallel programming
environment. Others form an integrated environment consisting of an editor, a debugger, performance
monitors, and a program visualizer for improving software productivity and the quality of application
programs, such as the packages Express and TOPSYS.

Figure 11.1 shows a classification of environment types on the line between the minimal languages and
integrated environments. Integrated environments can be divided into basic, limited, and well-developed
classes, depending on the maturity of the tool sets.

535" W Advanced Computer Architecture

Parallel

Languages Linda, DINO, Strand-88
FORCE, SISAL, Hypertasking

Software
Tool Type Basic SPISCES-2 SCHEDULE
——— = CODE/ROPE, POKER

MONMACS, OLYMPUS

Limited

PiE, MIMDizer,
PAT, Myrias

Integrated
Environmerit

Well

E FAUST, Express
TOPSYS

Fig: 1.1 Software tool types for parallel programming (Courtesy of Chang and Smith #990)

A basic environment provides a simple program tracing facility for debugging and performance monitoring
or a graphic mechanism for specifying the task dependence graph in SCHEDULE, the process call graph in
FAUST, and the process component graph in PIE.

Limited integration provides tools for parallel debugging, performance monitoring, or program
visualization beyond the capability of the basic environments listed. Well-developed environments provide
intensive tools for debugging programs, interaction of textual /graphical representations of a parallel program,
visualization support for performance menitoring, program visualization, parallel 1/0, parailel graphics, etc.

The classification of a particular tool changes with time. For example, C-Linda and Fortran-Linda were
developed to help C and Fortran programmers write parallel programs using the tuple spaces in Linda.

Environment Features In designing a parallel programming language, one often faces a dilemma involving
compatibility, expressiveness, ease of use, efficiency, and portability. Parallel languages are developed either
by introducing new languages such as Linda and Occam or by extending existing sequential languages such
as Fortran 90, C*, and Concurrent Pascal. A new parallel programming language has the advantage of using
high-level paraliel concepts or constructs for parallelism instead of using imperative (algorithmic) languages
which are inherently sequential.

Most parailel computer designers choose the language extension approach to solving the compatibility
problem. High-level parallel constructs were added to Fortran, C, Pascal, and Lisp to make them suitable for
use on parallel computers. Special optimizing compilers are needed to automatically detect parallelism and
transform sequential censtructs into paralled ones.

Paraflel Program Development and Environments “ 839

High-level parallel constructs can be implicitly embedded in the syntax or explicitly specified by users.
We have identified three compiler approaches: preprocessors, precompilers, and parallelizing compilers, as
illustrated in Fig. 11.2.

New .
——= STRAND-88, Linda, SISAL

Preprocessor TOPSYS, FAULT, PISCES-2
Hypertasking, SCHEDULE

e t—

Parallel FORCE, PIE, Myrias, MONMACS
Language Language CODE/ROPE, POKER, OLYMPUS
Extension
e Fortran-90, Ada
Language
Extended Features
Automated Express,
FX Fortran
Precompiler

DINO, MiMDizer, PAT
Semiautomated

Fig: 1.2 Parafiel languages and compiler technology for paraliel programming at different automation levels

Preprocessors, such as FORCE and MONMACS, use compiler directives or macroprocessors. Precompilers
include automated Alliant FX Fortran compilers, the Express C automatic parallelizer, and semiautomated
compilers such as DINO, PAT, and MIMDizer.

Some early parallel language approaches are differentiated in Fig. 11.2 based on the degree of compilation
support developed. The categorization is by no means fixed. A language tool can be upgraded from the
semiautomated category to the automated category if the compiler is upgraded . Several parallel programming
tools are summarized in Table 11.1.

In addition to language/compiler development, a parallel programming environment must have supporting
tools to facilitate the development and testing of parallel programs. Such an environment should provide
software tool sets which can be applied to different phases of the program development cycle such as for
editing, debugging, performance monitoring, and tuning.

540" M.

Advenced Computer Architecture
Table 11.1 Representative Parallel Programming Tools
Tool Name, Language, 0S, GUI Hardware Applications
Computing and Enviroriment Platform Remiarks and
Model Features References
MIMDizer Fortran, UNIX, VMS, X-MP, Y-MP, Cray 2, Scientific numerical
shared-memory X-Window, SunView, iPSC, Sun, IRIS, NEC. computations; Pacific
message-passing Do-loop parallelization Sierra Rescarch
systems compiler directives, array Corp. [Harrison%0]
" decomposition code and [PSR90].
restructuring, mcssage-
Express Fortran 77, Fortran 90, C, iPSC, Y-MP, Sun, Scientific
message-passing C++, UNTX, DOS, nCUBE, PC, (finite-clement, etc.);
systems X-Window, SunView, Macintosh. Parasoft. Corp.
code para!}ehzatwn, . [Parasofi9Q].
domain deoomposmon, '
communication momtonng
load balancing. e
C-Linda C (Fortran called from C), | iPSC/860, Y-MP, Scientific and
tuple-space UNIX, X-Window, new - Sun, IBM R6000, - distributed database
protocol language extension to Encore, Sequent, " processing; Scientific
parallel programming. Apollo. Computing Ass., Inc.
[Ahuja86).
SCHEDULE Fortran, C, UNIX, Cray 2, Encore, Scientific, numeric;
shared-memory) }X-Wmdow, SunView, Sequent, Alliant. [Dongarra86], University
systems parallel algorithm . of Tennessee.
development and functionai
paralielization.
GUI = Graphics user interface.

Advances in visualization allow the programmer to visualize paraliel computations through dynamic
graphical animation of control flow and data flow patterns. Program visualization permits users to identify
performance bottlenecks in a parallel program more easily than with a purely text-based interface.

Summary The important environment features are summarized below:

(1) Control-flow graph generation.
(2) Integrated textual/graphical map.
(3) Parallel debugger at source code Jevel.

Paratlel Program Development and Environments ‘ " 54

(4) Performance monitoring by either software or hardware means.
(5) Performance prediction model.
(6) Program visualizer for displaying program structures and data flow patterns.
(7} Parallel input/output for fast data movement.
(8) Visualization support for program development and guidance for parallel computations.
(9) OS support for parallelism in front-end or back-end environments,
{10) Communication support in a network environment.

11.1.2 Y-MP, Paragon and CM-5 Environments

The software and programming environments of the Cray Y-MP, Intel Paragon XP/S, and Connection
Machine CM-5 are examined below. Readers can also refer to Chapter 13 and the plentiful material available
on the web for additional information on these and other parallel computer environments.

Cray Y-MP Software The Cray Y-MP ran with the Cray operating systems UNICOS or COS. Two Fortran
compilers, CFT77 and CFT, provided automatic vectorizing, as did C and Pascal compilers. Large library
routines, program management utilities, debugging aids, and a Cray assembler were included in the system
software. Communications and applications software were also provided by Cray, by a third party, or from
the public domain.

UNICOS for Y-MP was written in C and was a time-sharing OS extension of UNIX. UNICOS supported
optimizing, vectorizing, concurrentizing Fortran compilers and optimizing and vectorizing Pascal and C
compilers. Besides interactive mode, it supported the Network Queueing System (NQS) for batch processing.

COS was a multiprogramming, multiprocessing, and multitasking OS. It offered a batch environment to
the user and supported inieractive jobs and data transfers through the front-end system. COS programs could
run with a maximum of four processors up to 16M words of memory on the Y-MP system. Migration tools
were available to ease conversion from COS to UNICOS.

We will describe three multiprocessing/multitasking methods—macrotasking, microtasking, and
autotasking—in Section 11.2.3. The Cray Y-MP implemented all three methods and they could work together
in a single program. '

CFT77 was a multipass, optimizing, transportable compiler. It carried out vectorization and scalar
optimization of Fortran 77 programs. The Cray assembler, CAL, enabled a user to tailor a program to the
architecture of the Cray Y-MP.

Subroutine libraries contained various utilities, high-performance 1/0 subroutines, numerous math and
scientific routines, and some special-purpose routines for communications and applications. A directory of
applications software for Cray supercomputers was also made available.

Intel Paragon XPIS Software The Intel Paragon XP/S system was an extension of the Intel iPSC/860
and Delta systems. A summary of the XP/S system is given in Table 11.2. It was claimed to be a scalable,
wormhole, mesh-connected multicomputer using distributed memory. The processing nodes used were
50-MHz 1860 XP processors.

Paragon ran a distributed UNIX/OS based on OSF technology and was in conformance with POSIX,
System V.3, and Berkeley 4.3BSD. The languages supported included C, Fortran, Ada, C++, and data-parallel
Fortran.

542‘“ Advanced Computer Architecture

Table 11.2 intel Paragon XP/S Multicomputer System

Capacity 5-300 Gflops peak 64-bit results, 2.8-160 GIPS peak integer performance,
node-to-node message routing at 200 Mbytes/s (full duplex), 1-128 Gbytes
main memory, up to 500 Gbytes/s aggregate bandwidth, 6 Gbytes - 1 Tbyte
mtemnldtskstorage,upto&t?ﬁﬁyte!saggregaﬁeliﬁw i

Node architecture Nodes based on Intel’s 50 MHz i860 XP processor, 75 Mﬂbps, 42 VAX
MIPS peak per processor, 16-128 Mbytes DRAM per node.

Operating system Distributed UNIX based on OSF tec-hnology, conformance Wﬁh POSIX,
System V.3,4.3 BSD virtual mcmory, sunuhmmus batch and mte.mcu\re
operation.] T e . :

Programming environment C, Fottran, Ada, C++, data-parallel Fomn, mymd moi suite wxﬂs a

Matif-based GUI, FORGE and CAST" paralleimhan IQO‘S Intei
, Pr,oSolvm' parallel equation solvm,-BLAS, ¥ i

y msuahutwn syswm(PVSJ R : '
Visualization X Window system, PEX, Distributed Graphic mm (DGL) client
support, AVS and Exp}orer mtcrac’ewé v:sm:lm, connectmty 1o HIPPT

Source: Intel Corporation, Supercomputer Systems Division, Beaverton, Oregon, 1991.

The integrated tool suite included FORGE and CAST parallelization tools, Inte] ProSolver parallel equation
solvers, and BLAS, NAG, SEGIlib, and other math libraries. The programming environment provided an
interactive parallel debugger (IPD) with a hardware-aided performance visualization system (PVS).

CM-5 Software The software support and programmning environment for the CM-5 are introduced here.
The CM-5 designers aimed at independent scalability of processing, communication, and [/O. This aim must
necessarily be supported by extensive software, languages, and application libraries.

The software layers of the Connection Machine systems are shown in Fig. 11.3. The operating system used
was CMOST, an enhanced version of UNIX/OS which supported time-sharing and batch processing. The
low-level languages and libraries matched the hardware instruction-set architectures.

CMOST provided not only standard UNIX services but also supported fast IPC capabilities and data-
parallel and other parallel programming models. It also extended the UNIX [/O environment to support
parallel reads and writes and managed large files on data vaults.

The Prism programming environment was an integrated Motif-based graphical environment. Users could
develop, execute, debug, and anatyze the performance of programs with Prism, which could operate on
terminals or workstations running the X-Window system.

High-level languages supported on the CM-5 included CM Fortran, C++, and *Lisp. CM Fortran was
based on standard Fortran 77 with array processing extensions of standard Fortran 90. CM Fortran also
offered several extensions beyond Fortran 90, such as a FORALL statement and some additional intrinsic
functions.

Parallel Program Development and Environments . " 543

User Applications

High-Level Languages: C*,
CM Fortran
*Lisp

Tools &
Utilities

Libraries
CM Scientific

NQS Batch
Software System
Library Low-lever
Visuali- ow-leve Prism

languages

zation & Libraries Check-

CMMD pointing
- Hardware
File systems Operating Networking
System
(UNIX) = HIPPI
» High-performances ® UltraNet
parallel file system = YME

® Ethernet
= FDDI

= NFS

Fig. 113 Software layers of the Connection Machine systam (Courtesy of Thinking Machines Gérporation, 1992)

C* was an extension of the C programming language which supported data-parallel programming. Similarly,
*Lisp was an extension of the Common Lisp programming language for data-parallel programming. Both
could be used to structure parallel data and to compute, communicate, and transfer data in parallel.

The CM Scientific Software Library included linear algebra routines, fast Fourier transforms, random
number generators, and some statistical analysis packages. Data visualization was aided by an integrated
environment including the CMXII library. CMMD was a CM message-passing library permitting concurrent
processing in which synchronization occurs only between matched sending and receiving nodes.

11.1.3 Visualization and Performance Tuning

The performance of a paraltel computer can be enhanced at several stages: At the machine design stage, the
architecture and OS should be optimized to yield high resource utilization ahd maximum system throughput.
At the algorithm design/data structuring stage, the programmer should match the software with the target
hardware. At the compiling stage, the source code should be optimized for concurrency, vectorization, or

544‘ Advanced Computer Architecture

scalar optimization at various granularity levels. Finally, the compiled object code should go through further
fine-tuning with the help of program profilers or run-time information.

Visualization Support We consider below performance tuning at the programming, compiling, and
execution stages. To probe further, we add a few performance measures to reflect the resource utilization
rate for a wide class of application programs. These measures are useful in predicting the performance
and in performing program tuning in an interactive manner. Special program trace methods are needed for
event monitoring in the performance tuning process. A special graphics user interface is required to support
performance monitoring, prediction, and visualization.

In the 1/O and program development areas, visualization is also needed. Performance tuning requires
extensive software experiments with the help of GUI and utilization support. Tuning an operating system and
an application program requires effort from both ends. System tuning involves the tuning of virtual memoyy
and process priorities, such as adjusting the resident set size and scheduling policy.

Even the best computer architect cannot guarantee the performance of a system until the machine is tested
by actually running real software programs. During the architecture design stage, simulation may be used
to predict performance. However, simulation experiments are often biased or restricted by theoretical load
characteristics.

During the compiling and execution stages, user programs can be modified either through programmer
guidance or through the use of an intelligent compiler for automatic code transformations toward optimization
or vectorization. Program modification can be extended all the way back to the algorithm design stage.
Choosing better data structures can often make a big difference.

Performance Tuning If special hardware/software mechanisms are available, one can also collect run-time
information, such as processor and memory utilization patterns, to guide the code transformation. One can
also conduct a critical-path analysis of programs in order to reveal the bottleneck. Bottleneck removal or
shortening the critical path through grain packing or other techniques can improve the system performance.

Besides measuring the MIPS, Mflops, or TPS rate, performance tuning may require a check of the CPU
utilization rate, cache hit ratio, page fault rate, load index, synchronization frequency, memory-access pattern,
OS/compiler overhead, and interprocessor communication or data movement delays. These measures reflect
the degree of matching between software and hardware.

To tune a computer system for a given application, the gap between hardware and software must be
closed. Compiler directives can be inserted to guide code optimization. Program profilers can be used
to medify the object code in multiple passes through the compiler. Program tuning at run time must be
assisted by program traces and event monitoring. These may require special hardware/software support. The
purpose of these traces is to produce system control parameters for more efficient processor allocation, better
memory utilization, higher cache hit ratios, fewer page faults, more efficient synchronization, and lower
communication overhead.

Run-time program tuning is much more difficult to implement than compile-time tuning. However, the
latter lacks run-time conditions, making it difficult to predict the performance accurately. Thus both compile-
time and run-time techniques are needed in the performance tuning process.

Paraflef Program Development and Environments " 54c

{11.2{ SYNCHRONIZATION AND MULTIPROCESSING MODES .

Principles of various synchronization mechanisms for interprocess communication are studied
first. Then we describe various modes for multiprocessing with shared memory.

11.2.1 Principles of Synchronization

The performance and correctness of a paraltel program execution rely heavily on efficient synchronization
among concurrent computations in multiple processors. As revealed in Chapter 6, both hardware and software
mechanisms are needed to synchronize various granules of paralel operations.

The source of the synchronization problem is the sharing of writable objects (data or structures) among
processes. Once a writable object permanently becomes read-only, the synchronization problem vanishes at
that point. Synchronization consists of implementing the order of operations in an algorithm by observing the
dependences for writable data. Shared object access in an MIMD architecture requires dynamic management
at run time, which is much more complex than that of an SIMD architecture using lockstep to achieve
synchronization at compile time.

Low-level synchronization primitives are often implemented directly in hardware. Resources such as the
CPU, bus or network, and memory units may also be involved in synchronization of parallel computations.

We examine below atomic operations, wait protocols, fairness policies, access order, and sole-access
protocois, based on the work of Bitar (1991), for implementing efficient synchronization schemes.

Atomic Operations Two classes of shared memory access operations are (1) an individual read or write
such as Register! : = x and (2) an indivisible read-modify-write such as x := fx) or yi=fx).

From the synchronization peint of view, the order of program operations is described by read-modify-write
operations over shared writable objects called afoms. An operation on an atom is called an atomic operation.

A hard atom is one whose access races are resolved by hardware such as Test&Set, whereas a soft atom is
one whose access races are resolved by software such as a shared data structure protected by a Test&Set bit.

The atomicity of objects must be explicitly implemented by the software (on soft atoms), or the software
must explicitly delegate the responsibility to the hardware (for hard atoms).

The execution of operations may be out of program order as long as the execution order preserves the
meaning of the code. Three kinds of program dependences are identified below:

* Data dependences: WAR, RAW, and WAW as defined in Chapters 2 and 5.
* Control dependences: Program flow control statements such as goto and if-then.
* Side-effect dependences: Due to exceptions, traps, 1/0 accesses, time out, etc.

The correct execution order, as enforced by correct synchronization, must observe the program
dependences. The atomicity of operations is maintained by observing dependences. Therefore, synchronized
execution order must resolve any race conditions at run time.

Wait Protocols There are two kinds of wait protocols when the sole-access right is denied due to conflicts.
In a busy wait, the process remains loaded in the processor’s context registers and is allowed to continuatly
retry. While it does consume processor cycles, the reason for using busy wait is that it offers a faster response
when the shared object becomes available.

544" W Advanced Computer Architecture

In a sleep wait, the process is removed from the processor and put in a wait queue. The process being
suspended must be notified of the event it is waiting for. The system complexity increases in a multiprocessor
using sleep wait as compared with those implementing busy wait.

When locks are used to synchronize processes in a multiprocessor, busy wait is used more often than sleep
wait. Busy wait may offer a better performance if it entails less use of processors, memories, or network
channels. If sleep-wait queues are managed using lock synchronization, it may be necessary for a process to
wait for access 10 a sleep-wait queue.

Busy wait can be implemented with a self-service protocol by polling across the network, or with a full-
service protocol by being notified across the network when the atom becomes available.

Fairness Policies Busy wait may reduce synchronization delay when the shared object becomes available.
However, it wastes processor cycles by continually checking the object state and also may cause hot spots in
MEmOory access.

In sleep wait, the resources are better utilized, but a longer synchronization delay may result. For ali
suspended processes waiting in a queue, a fairness policy must be used to revive one of the waiting processes.
Three faimess policies are summarized below:

« FIFQO: The wait queue follows a first-in-first-out policy.
« Bounded: The number of turns a waiting process will miss is upper-bounded.
+ Livelock-free: One waiting process will always proceed; not all will wait forever.

In general, the higher level of fairness corresponds to the more expensive implementation. Another
concern is the prevention of deadlock among competing processes.

Sole-Access Protocols Conflicting atomic operations are serialized by means of sole-access protocols.
Three synchronization methods are described below based on whe updates the atom and whether sole access
is granted before or after the atomic operations:

(7) Lock Synchronization In this method, the atom is updated by the requester process and sole access is
granted before the atomic operation. For this reason, it is also called pre-synchronization. The method can be
applied for shared read-only access. The lock granularity is a major issue in lock synchronization.

Most hardware-implemented locking applies to finer-grain physical units such as the memory module,
cache, memory/cache block, etc. Lock mechanisms are described in Section 11.3.1.

(2) Optimistic Synchronization This method also updates the atom by the requester process. But sole access is
granted after the atomic operation, as described below. It is also called post-synchronization. A process may
secure sole access after first completing an atomic operation on a locaf version of the atom and then executing
another atomic operation on the global version of the atom.

The second atomic operation determines if a concurrent update of the atom has been made since the first
operation was begun. If a concurrent update has taken place, the global version is not updated; instead, the
first atomic operation is aborted and restarted from the new global version.

The name optimistic is due to the fact that the method expects that there will be no concurrent access to the
atom during the execution of a single atomic operation. This method was designed to eliminate the bottleneck
created by a coarse-grain lock for the object of the first atomic operation.

Parallel Program Development and Envitonments - 547

This idea led to the concept of optimistic concurrency developed by Kung and Robinson (1981). Optimistic
synchronization requires extra work in order to implement the global update operations, and the method also
incurs a possible abortion cost.

(3) Server Synchronization This method updates the atom by the server process of the requesting process,
as suggested by the name. Compared with lock synchronization and optimistic synchronization, server
synchronization offers full service.

An atom has a unique update server. A process requesting an atomic operation on the atom sends the
request to the atom’s update server. The update server may be a specialized server processor (SP) associated
with the atom’s memory module.

Remote procedure calls and object-oriented or actor systems, in which shared objects are encapsulated
by a process, provide examples of server synchronization. In a shared-memory multiprocessor using hard
atoms, all three synchronization methods can be implemented, whereas oniy server synchronization is used
in a message-passing muiticomputer.

A soft atom occurs only under lock synchronization or optimistic synchronization. A specialized server
processor must be used to implement server synchronization in a multiprocessor with a centralized shared
memory.

In a message-passing system, the node processors with local memories can implement server
synchronization without using additional server processors.

Synchronization Environment After learning about the principles of IPC and synchronization methods,
we consider several implementation issues in developing parallel programs for multiprocessors.

Parallel program development hinges on how efficient synchronization is implemented with locks,
semaphores, and monitors. We assess below various synchronization environments.

It is often desired to move the synchronization logic closer o the shared memory wnits in order to reduce
bus traffic or network contention and CPU usage in the synchronization process. Such a synchronization
environment may require the use of a server processor for coordinating the synchronization process and
virtual memory management. The Cedar multiprocessor system has included this feature in globally shared
memory units.

In general, synchronization controls the granularity of partitioned algorithms, affects the ease of writing
correct programs, determines the faimess in selecting among competing processes, and ultimately influences
the efficiency of parallel program execution. Special hardware and software support are needed to create an
efficient and user-friendly environment.

Due to the dynamic run-time behavior, a poor synchronization environment may cause excessive waste
in CPU cycles or network bandwidths, which otherwise could be more effectively used by other active
processes. A poorly written parallel program may result in excessive synchronization that cancels all the
advantages of parallelism. Therefore, an ideal synchronization environment should be jointly developed by
designers and programmers.

11.2.2 Multiprocessor Execution Modes

Multiprocessor supercomputers are built for vector processing as well as for parallel processing across
multiple processors. Multiprocessing modes include parallel execution from the fine-grain process level to
the medium-grain task level, and to the coarse-grain program level.

54 . Advanced Computer Architecture
In this section, we examine the programming requirements for intrinsic multiprocessing as well as for
multitasking. Experiences using the Cray Y-MP are presented along with a programming example.

Multiprocessing Requirements Multiprocessing at the process level requires the use of shared memory in a
tightly coupled system. Summarized below are special requirements for facilitating efficient multiprocessing:

« Fast context switching among multiple processes resident in processors.

« Multiple register sets to facilitate context switching.

» Fast memory access with conflict-free memory allocation.

+ Effective synchronization mechanism among multiple processors.

« Software tools for achieving parallel processing and performance monitoring.
» System and application software for interactive users.

As machine size increases, the problems of communication overhead and effective exploitation of
parallelism in a user program become more challenging. Meeting the challenges relies to a great extent on
the development of system hardware and software support to free programmers from dealing with tedious
program partitioning, parallel scheduling, memory consistency, and latency tolerance.

Multitasking Environments Three generations of multitasking software were developed by Cray Research,
NEC, and other multiprocessor manufacturers. Multitasking exploits parallelism at several levels:

« Functional units are pipelined or chained together.

+ Multiple functional units are used concurrently.

+ 1/0 and CPU activities are overlapped.

« Multiple CPUs cooperate on a single program to achieve minimal execution time.

In a multitasking environment, the tasks and data structures of a job must be properly partitioned to
allow parallel execution without conflict. However, the availability of processors, the order of execution, and
the completion of tasks are functions of the run-time conditions of the machine. Therefore, multitasking is
nondeterministic with respect to time.

On the other hand, tasks themselves must be deterministic with respect to results. To ensure successful
multitasking, the user must precisely define and include the necessary communication and synchronization
mechanisms and provide protection for shared data in critical sections.

Reentrancy is a useful property allowing one copy of a program module to be used by more than one task
in parallel. Nonreentrant code can be used only once during the lifetime of the program. Reentrant code, if
residing in the critical section, can be used in a serial fashion and is called serially reusable code.

Reentrant code, which is called many times by different tasks, must be assigned with local variables and
control indicators stored in independent locations each time the routine is called. The standard and familiar
stack mechanism has been employed in Cray multiprocessors to support reentrancy.

11.2.3 Multitasking on Cray Multiprocessors

Three levels of multitasking are described below for parallel execution on Cray X-MPor Y-MP multiprocessors.
Multitasking tradeoffs are demonstrated by an example program execution.

Parallel Program Development and Environments

" 549

Macrotasking When multitasking is conducted at the level of subroutine calls, it is called macrotasking
with medium to coarse grains. Macrotasking has been implemented ever since the introduction of Cray X-MP
systems. The concept of macrotasking is depicted in Fig, 11 4a.

Program Call fork (S1, ...)
(concept) Call fork (82, ...)
Gall fork (S3, ...)
Call fork (S4, ...}
|._ Execution Time————|
Processor0 | S1 | s2 [s3a [sa |

Macrotasking 1

Processor 0 Ej
Processor 1
Processor 2

Processor 3

{a) Macrotasking across subroutine calls

Program Do | = 1,N

"0

I Execution time i

Processor0 | I=1 | 1=2 1=3 | 1=4 [1=5 [eee]
Microtasking j

Processor 0 I =1 I I=5 I
Processor 1 l =2 [ooo—l
Processor 2 L i=3 I sse |
Processor 3 l 1=4] P]

(b} Microtasking across loop iterations

Fig. 11.4 Multitasking at two different processing levels

A main program forks a subroutine S1 and then forks out three additional subroutines S2, S3 and S4.
Macrotasking is best suited to programs with larger, longer-running tasks. The program interface with the

550 i Advanced Computer Architecture

Cray Y-MP system’s macrotasking capability was a set of Fortran-callable subroutines that explicitly defined
and synchronized tasks at the subroutine level.

The execution of these four subroutine calls on a uniprocessor (processor 0) is done sequentially.
Macrotasking can spread the calls across four processors. Note that each processor may have a different
execution time. However, the overall execution time is reduced due to parallel processing.

Microtasking This corresponds 10 multitasking at the loop control level with finer granularity. Compiler
directives are often used to declare paralle! execution of independent or dependent iterations of a looping
program construct.

This technique was implemented in Alliant FX multiprocessors using the Doacross directive. Figure 11.4b
illustrates the spread of every four instructions of a Do loop to four processors simultaneously through
microtasking.

When the iterations are independent of each other, microtasking is easier to implement. When dependence
does exist between the iterations, the system must resolve the dependence before parallel execution can be
continued. Interprocessor communication is needed to resolve the dependences.

In addition to working efficiently on parts of programs where the granularity is small, microtasking works
well when the number of processors available for the job is unknown or may vary during the program’s
execution. Additionally, in a batch environment where processors may become available for short periods,
the microtasked job can dynamically adjust to the number of available processors.

Autotasking The autotasking feature automatically divides a program into discrete tasks for parallel
execution on a multiprocessor. In the past, macrotasking was achieved by direct programmer intervention.
Microtasking was aided by an interactive compiler.

Autotasking demands much higher degrees of automation. Only some Cray multiprocessors, like the
Cray Y-MP and C-90, were provided with autotasking software. Some compiler or assembler directives
were provided to allow programmers to fine-tune their code for better performance, especially in production
environments.

It should be noted that through program fine-tuning, plus the use of autotasking software support, the
above multitasking feature can improve both individual job performance and overall system throughput ina
production environment.

At its highest capability, autotasking should be able to achieve fully automatic multiprocessing. It should
allow user programs to be automatically partitioned over mul‘iple processors (without user intervention).
Autotasking is based on the microtasking design and shares several advantages with microtasking: very low
overhead synchronization cost, excellent dynamic performance independent of the number of processors
available, both large and small granularity parallelism, and so on. in addition to being fully automatic,
autotasking exceeds microtasking in overall performance and in the various levels of paralielism that can be
employed.

Multitasking Tradeoffs Speedup from multitasking may occur only when the time saved in executing
parallel tasks outweighs the overhead penalty. The overhead is very sensitive to task granularity; it includes
the initiation, management, and interaction of tasks. These are often accomplished by adding code to the
original code, as exemplified below.

Paralle! Program Devefopment and Environments - o)

This program can benefit from multitasking depending on the execution time of the subroutine SUB(J} and
the overhead introduced in service routines. Before one attempts to convert serial code into multitasked code,
the expected performance should be predicted to ensure a net gain.

Consider the sequential execution of the following code on an X-MP uniprocessor;

Example 11.1 Macrotasking on a Cray X-MP dual-processor
system (Courtesy of Cray Research, 1987)

Program Main
Do 1001=1,50

Dol0J=1,2
CALL SUB(J)
10 Continue

100 Continue
STOP
END

The 100 loop has dependent iterations which cannot be executed in parallel. The 10 loop has independent
iterations which are being attempted for multitasking. The following multitasked code is written for a dual-
processor X-MP.

Program Main

Common/MT/IST, IDN, JOB

CALL TSKSTART (IDTASK, T) SUBROUTINE T

JOB=1 Common/MT/IST, IDN, JOB

Do 1001=1, 50 101 CALL EVWAIT(IST)
CALL EVPOST(IST) CALL EVCLEAR(IST)
CALL SUB(1) IF (JOB .NE. 1) GOTO 102
CALL EVWAIT(IDN) CALL SUB(2)
CALL EVCLEAR(IDN) CALL EVPOST(IDN)

100 Continue GOTO 101

JOR=2 102 RETURN

CALL EVPOST(ST) END

CALL TSKWAIT(IDTASK)

STOP

END

552" Wi Advanced Computer Architecture

The execution of the sequential program on one CPU consists of two parts:

Time(1 CPU) = time(Seq) + time(SUB) = (0.04 + 0.96) % (20.83 s) = 20.83 s where time(SUB} accounts
for the 96% of time spent in subroutine SUB. and time(Seq) for 4% spent on the remaining portion of the
program. The total run time measured on one CPU was 2083 s.

To execute the multitasked program on two CPUs requires

Time {2 CPUs) = time (Seq) + % time(SUB) + overhead

The subroutine SUB was equally divided between two CPUs. This reduces time(SUB) by one-half. The
overhead is estimated below with some approximation of the delays caused by workload imbalance and
memory contention, The service routines TSKSTART, TSKWAIT, EVPOST, EVCLEAR, and EVWAIT
were used in the Cray X-MP to establish the multitasking structure.

Overhead = time(TSKSTART) + time(TSKWAIT) + 51 x time(EVPOST)
+ (workload imbalance delay) + (memory contention delay)
= 1500 CP+ 1500 CP + 51 x 1500 CP + 50 x 200 CP +
50 % 1500 CP+(0.02x50x025)=0.216s

where the CP (clock period) is equal to 9.5 ns. Therefore,
: 1
Time {2 CPUs) = (0.4 x20.83) + > % (0.96 x 20.83) +0.216=11.05 5.

We thus project the following speedup:

time(1 CPU) 20,83 _ 1.88
time(2 CPUs) 11.02

Speedup =

This speedup helps decide whether multitasking is worthwhile. The actual speedup of this program as
measured by Cray programmers was 1.86. This indicates that the above prediction is indeed very close.

Factors affecting performance include task granularity, frequency of calls, balanced partitioning of work,
and programming skill in the choice of multitasking mechanisms.

Multitasking offers a speedup which is upper-bounded by the number of processors in a system. Because
vector processing offers a greater speedup potential over scalar processing (in the Cray X-MP, vectorization
offered a speedup in the range of 10 to 20), multitasking should not be employed at the expense of vectorization.

In the case of a short vector length, scalar processing may outperform vector processing. In the case of a
small task size, vector processing (or even scalar processing) may outperform multitasking.

Both scalar and vector codes may be multitasked, depending on the granularity and the overhead.
For coarse-grain computations with reasonably low overhead (as in the above example), multitasking is
appropriate and advantageous.

113]| SHARED-VARIABLE PROGRAM STRUCTURES

We describe below the use of spin locks, suspend locks, binary and counting semaphores,
and monitors for shared-variable programming. These mechanisms can be used to implement

Poralie! Program Development and Environments e §53

various synchronization methods among concurrent processes. Shared-variable constructs are also used in
OS kernel development for protected access to certain kernel data structures.

11.3.1 Locks for Protected Access

Lock and unlock mechanisms are described below using shared variables among multiple processes. Binary
locks are used globally among multiple processes. Spin locks are based on a time-slot concept, Dekkers
locks are based on using distributed requests jointly with a spin lock. Special multiprocessor instructions are
needed to implement these locking mechanisms,

Spin Locks The entrance and exit of a CS can be controlled by a binary spin lock mechanism in which the
gate is protected by a single binary variable x, which is shared by all processes attempting to enter the CS,

b)

The gate variable x is initially set to 0, corresponding to the open status. Each process P, is allowed to test the
value of x until it becomes 0. Then it can enter the CS. The gate must be closed by setting x = | after entering.

Example 11.2 Definition of a binary spin lock

Shared var x: (0,1) /The spin lock/
x=90 /The CS is open initially/
Process P for all i
Repeat
: /Spinning with busy wait/
Until x=0
x:=1 /Close gate after entry/
: /The critical section/
x:=0 /Open gate after done and exit/

After the CS is completed, the gate is reopened. A busy-wait protocol is used in spin locks, Test and set
of lock variable value must be indivisible to prevent simultaneous entries into the CS by multiple processes.

D)

One way to guarantee mutually exclusive entry is to use a generalized spin lock with n processes as defined
below. The gate variable x is allowed to assume » integer values (1,2,,n). The fact that x = / implies that
the gate is open only to process P;.

Example 11.3 Definition of a generalized spin lock with
n possible values

554‘ Advanced Computer Architecture

Shared var x: (1,2, 3, ...,n) /The spin lock/

x=1 /The CS is initially open to process Py/
Process P; foralli=1,2,...,n-1
Repeat
: /Spinning with busy wait/
Until x=1 /Entry/
: /The critical section/
x=1+1 /Exit/
Process P, {The last process/
Repeat
: /Spinning with busy wait/
Untilx=n /Entry/
: /The critical section/
x:=1 (Exit and return to Py/

Initially, the lock is open to Py. After P, finishes with the CS, the gate is open to P, and so on. The last
process P, will reset the lock tox = 1.

This solution guarantees mutual exclusion at the expense of longer waiting times. The processes must wait
even if there are no conflicting requests at the same time.

Dekker’s Protocol ‘To guarantee mutual exclusion without unnecessary waiting, Dekker has suggested the
use of separate request variables by different processes along with the use of a spin lock.

P
& : Example 11.4 Dekker’s protocol for protected access to
a critical section by two processes

The following program shows Dekker’s solution for two processes. Each process uses a request variable {pi)
to indicate if it wishes to be inside (1) or outside (0) the CS. When both processes indicate the same wish to
be inside, a spin lock (x = 1 or 2) is used to resolve the conflict.

var pl, p2: {inside, outside)

Shared varx: (1, 2)
x =1 /The CS is initially open to process P1/
pl = outside; p2 = outside

Process 1 Process 2

pl = inside p2 = inside

if p2 = inside then if p1 = inside then
begin begin

if x =2 then ifx=1 then

Paralie! Program Development and Environments "W 553

begin . begin
pl = outside p2 = outside
Repeat until x = | Repeat until x = 2
pl :=inside p2 = inside
end end
Repeat Repeat
until p2 = outside until p1 = outside
end end
/The critical section/ : /The critical section/
x ;=2 /Open to process 2/ x:=1 /Open to process 1/
pl = outside; p2 = outside

This scheme avoids unnecessary waiting delays whenever there is no conflicting request. The generalization
of Dekker’s method to a large number of processes is very cumbersome and also expensive to implement (see
Problem 11.2).

Suspend Locks These types of locks use the sleep-wait protocol. A process blocked from entering a CS
is removed from the processot’s ready-to-run queue. Instead, the suspended process is put in a wait queue.
When the suspend lock is opened, one of the suspended processes in the wait quene is reactivated using one -
of the faimess policies.

Spin locks or suspend locks can be implemented in a multiprocessor system using special instructions
such as Test&Set, Fetch&Add, and Compare&Swap, depending on the atomic operations supported by the
hardware in a given computer.

The Test&Set(x, ;) instruction operates on two boolean variables: The spin lock x is shared by multiple
processes, and the local condition variable y; indicates the outside (0) and inside (1) wishes of process P
As an atomic action, this instruction sets y; to the old value of the lock x and closes the lock (1) as follows:

Test&Set(x, y,):
<y;=x; x=1>

If both processes simultaneously wish to enter the CS, only one can succeed in closing the spin tock x and
thus mutual exclusion is guaranteed.

0

Example 11.5 Test&Set implementation of Dekker’s
protocol for accessing a critical section

Shared var x: (0, 1)
varyl, y2: (0, 1)
Process 1
if yl = 1 then Test&Set(x, y1)

556" - Advanced Computer Architecture

if yl = | then Test&Set(x, y2)
: /The critical section/
x:=0 /Exit/
: /Noncritical section/

Process 2
if y2 = 1 then Test&Set(x, y2)
if y2 = 1 then Test&Set(x, y1)
: /The critical section/
x:=0 /Exit/
: /Noncritical section/

The Test&Set instruction can be used to implement Dekker’s protocol, as shown in the above program in
which y; corresponds to the request variable p; from process for i = 1 and 2, respectively.

11.3.2 Semaphores and Applications

Spin locks using the busy-wait protocol may cause excessive waiting in a multiprogrammed multiprocessor
system. Eliminating busy waiting in processes would make better use of the resources if a process blocked
from entering a CS goes to sleep and is awakened when the CS is opened.

This improves processor utilization. Instead of using processors to execute a spinning process, they could
be used more productively in executing other ready-to-run processes. Semaphores were developed as an
improvement on the sleep-wait protocol.

Binary Semaphores Critical sections can be viewed as sections of railroad track. Semaphores are control
signals for avoiding collisions between trains (processes) on the same track section (C8). Dijkstra (1968)
introduced the use of binary semaphores for the management of concurrent processes seeking to access CSs.

A binary semaphore s is a boolean variable taking the value of 0 or 1. Each shared resource or CS can be
associated with a dedicated semaphore. Only two atomic operations (primitives), £ and V, are used to access
the CS represented by the semaphore apart from initialization by setting s = 1.

« The P(s) operation causes the value of the semaphore s to be decreased by 1 if s is not already 0;
process is granted access to resource or CS. Otherwise, process enters wait state.

+ The ¥(s) operation causes the value of the semaphore s to be increased by 1 if s is not already I,
process releases the resource or exits CS.

The physical meaning of s = 1 is the availability of single copy of the resource represented by s, On
the other hand, s = 0 means the resource is being occupied. When the resource is a C8, a binary semaphore
corresponds essentially to a gate or lock variable used in the sleep-wait protocol.

Counting Semaphores A counting semaphore 515 a nonnegative integer taking (n + 1) possible values 0,
1,2, ..., n for some integer n > 1. Therefore a binary semaphore corresponds to the special case of n=1. A
counting semaphore with a maximum value of # acts as a collection of 7 permits corresponding to the use of
n copies of a shared resource.

Faralte! Pragram Development and Environments . Loy

A shared resource can be a program segment, a data table, or any passive device such as memory or [/O
resources. A permit is issued upon each request until all copies are taken. Formally, we define P(s) and F(s)
on counting semaphores as follows;

» P(s): If 5 >0, then s := 5 — 1; else suspend the execution of the current process and place it in a wait
queue.
* V(s): 51 =5+ 1. If the wait queue is not empty, then wake up one of the processes.

Intuitively, the operation P(s) corresponds to the submission of a request for a permit, ¥{s) corresponds
to the return of a permit after a process finishes using a copy of the resource. Note that both operators are
atomic. If the maximum value of a counting semaphore (s = n) has already been reached, the ¥ (s) operation
will not increase the value of s beyond the upper bound #.

System Deadlock System deadlock refers to the situation in a multiprocessor when concurrent processes
are holding resources and preventing each other from completing their execution.

In general, a deadlock can be prevented if one or more of the following four necessary conditions are
removed:

(1) Mutual exclusion—Each process has exclusive control of its allocated resources.

(2) Non-preemption—A process cannot release its allocated resources untit completion.

(3) Hold and wait—Processes can hold resources while waiting for additional resources.

(4) Circular wait—Multiple processes wait for each other’s resources in a circular dependence situation.

Shared-Resource Alfocation P-¥ operators and semaphores can be used to allocate and deallocate shared
resources in a multiprocessor to avoid deadlock among concurrent processes.

b)

Four processes are sharing six resources in the process declaration shown in Fig. 11.5a. The six resource
types are represented by binary semaphores §; for i =1, 2, ..., 6. Allocation of the resource §; to process P; is
requested by P(S;), and the release of resource S, is requested by 1(S,). The resource request-release pattern
of each process P; for j = 1, 2, 3, 4 is shown by a column of such P-V pairs.

All four processes can submit their requests asynchronously. It is the request ordering that leads to
deadlock. The release ordering does not make any difference.

The resource aflocation graph shown in Fig. 11.5b is a directed graph where the nodes correspond to the
six resource types. An edge with the label P; from node S; to node §; means process Py is requesting resource
S; while holding resource ;.

Acycle, §; - S > 54 = 55 = §; — S,. in Fig. 11.5b implies the possibility of a circular wait among
processes Py, P, and P,. To break the deadlock possibility, onc can modify the resource request pattern in
process 4 as shown in the fifth column.

Example 11.6 Resource allocation using P-V operators
to prevent deadlock

555 il Advanced Computer Architecture

A new allocation graph results in Fig. 11.5¢, where no cycle exists after reversing the edge between §, and
Se. Of course, this reversing should not invalidate the demand by process 4.

Process 1 Process 2 Process 3 Process 4 Process 4
(Modified)

* P(Sz) L - []
P(51) * P(53) . P{S1)

* P(54) . P(S5) *
P(S2) . P(S5) . .

* P(S5) . P(S6) P(36)
P(Ss) [] * [] L 2

. . . P{s1) P(S5)

. V{(S5) . . .

- - V(Ss) - L]

. * * V{(S6) V(S6)
V{S1) V(S4) . V(S1) V(S5)

i . V(S3) V(SS) - (st
V(SZ) [] - » L]
V(83) V(S2) M . hd

L] L L] » []

(b) Resource allocation graph with {b) Modified resource allocation graph without
circular wait. circular wait.

Fig. 11.5 Shared resource allocation using P-V operators to prevent system deadlock (Reprinted from
Hwang, Proc. IEEE, 1987) o

Paraliel Progrom Development and Environments " 550

Deadlock Avoidance Static prevention as outlined above may result in poor resource utilization. Dynamic
deadlock avoidance depends on the run-time conditions, which may introduce a larger overhead in detecting
the potential existence of a deadlock.

Although dynamic detection may lead to better resource utilization, the tradeoff in detection and recovery
costs must be considered before choosing between static and dynamic methods.

Most parallel computers have a static prevention method due to its simplicity of implementation.
Sophisticated dynamic avoidance or a recovery scheme for the deadlock problem requires one to minimize
the incurred costs to justify the net gains. Breaking a deadlock problem by aborting some noncritical processes
should result in a minimum recovery cost,

A meaningful analysis of the recovery costs associated with various options is difficult. This is the main
reason why sophisticated deadlock recovery mechanisms have not been built into most multiprocessors.

The P and ¥ operators are usually implemented by the underlying operating system kernel. They can also
be implemented by special hardware or by software traps. Spin locks and P-} operators are both low-level,
fine-grain, atomic operations which are more often used in system programming than in user programming.
Only binary semaphores are used in controlling a CS. Counting semaphores are used in the deadlock-free
allocation of shared resources with multiple copies each.

The main problem is that such low-level operations are error-prone and not appealing to ordinary
programmers who enjoy the simplicity of using high-level language.

11.3.3 Monitors and Applications

In using locks or semaphores to define critical sections, shared variables are global to all processes. CSs are
embodied within processes, which may be scattered throughout the entire program. This may pose some
problems in program modularization or debugging, which in turn limits parallelism.

Hoare (1974) proposed a monitor construct for structuring an operating system. We describe below the
structure of monitors for parallel programming applications.

Monitor Structure A monitor is a high-level program construct for structured programming that
emphasizes modularity and encapsulation. As shown in Fig. 11.6, a monitor collects shared variables and
associated procedures into a single construct which allows only one process access at a time.

A typical monitor consists of the following three parts: The first part defines the monitor name and declares
all local variables to be used. The second part is a collection of procedures using the variables declared. The
third part is for the initialization of all local variables.

In a monitor, the CSs are removed from the bodies of user programs and become procedures or functions
defined over variables confined within the boundary of the monitor. A process invokes the appropriate
procedure within the monitor when it wishes to enter the desired CS. Instead of providing individual process
management, a monitor behaves like a secretary in an office who provides services to a number of persons
(processes). Each program can declare and use as many monitors as required.

560" kil Advanced Computer Architecture

Procedures Process
Monitor ™
A
Shared
Variables
B

Construct:
Monitor secretary (name}
(declaration of local data)
Procedure name (parameter list}
begin
{body)
end
{declaration of other local procedure}

begin
(initialization of local data)
end

Fig.11.6 The structure of a monitor for structured programming

Producer-Consumer Implementation The monitor procedures should not access any nonlocal variables
outside the monitor. An example monitor for implementing the procedure-consumer problem is shown below:

b

In this monitor, two procedures are defined over the declared local variables. The producer process sends
messages that are received by the consumer process. The communication between producer and consumer is
handled by the deposit and fetch procedures defined below:

Example 11.7 Monitor for a producer process and
a consumer process

Monitor Producer-Consumer
Buffer[0:n-1]: integer
Inpointer, Outpointer: integer
Not full , Notempty: Buffer conditions
Count; integer index

Farallel Program Development and Environments sl

Procedure Deposit(])
begin
if Count = n then wait(Notfull)
Buffer(Inpointer) := [
Inpointer := (Inpointer + 1) mod n
Count := Count + |

signal (Notempty)
end

Procedure Fetch(I)
begin
if Count = 0 then wait(Notempty)
I':= Buffer(Outpointer)
Outpointer := (OQutpointer + 1) mod n
Count := Count — |
signal (Notfull)
end
begin
Inpointer := 0
Outpointer := 0
Count ;=0
end

The deposit procedure appends to or inserts messages into the communication buffer. The fetch procedure
takes or fetches messages for the consumer. The producer process calls the deposit procedure for service, and
the consumer process calls the fetch procedure for service.

Only one process (either producer or consumer) can call the desired procedure at a time. A monitor is not
itself a process. A monitor is a static module of data and procedure declarations. The producer and consumer
are active processes which must be programmed separately as shown below:

Producer Consumer
I: integer I: integer
repeat repeat
begin begin
Produce(I) Fetch{T)
Depesit(l) Consume(])

end end

567 " i Advanced Computer Architecture

Monitor Applications All the operations of semaphores can be simulated by monitors, and vice versa.
Monitors have been suggested for use in a number of parallel programming applications.

Brinch-Hansen (1977) used monitors for Concurrent Pascal programming. In general, a parallel
program may contain two different kinds of program modules: active processes and passive mORIoOTS.
As in the producer-consumer example, all shared variables are defined within the monitors; interprocess
communications are handled by calling procedures in the same monitor. Different groups of processes may
use different monitors (secretaries) for different types of services (procedures) which may require special
shared resources (local variables).

Several distinct advantages are observed in using monitors to support IPC or interprocessor synchronization.
First, all dedicated services (procedures) are placed together within each monitor. Therefore, a calling
process can be freed from worrying about these procedure details. Second, the monitor designer does not
have to worry about how many user processes may access it. Third, moniters provide modularity in program
debugging and maintenance.

For example, one can program a disk scheduler as a dedicated monitor. All user processes can submit
requests to the disk scheduler, and only one is serviced by a driver procedure at a time, Monitors hide
information within their boundaries, which implies the potential for concurrent object-oriented programming
and efficient handling of abstract data types. Programs using monitors are not only easier to debug but
also are easier to use in exploiting parallelisin. The localization of shared variables is an important asset in
concurrent programming.

Monitors can be implemented directly with data and procedure declarations, or indirectly through the use
of semaphores such as using P-¥ primitives to declare the entry and exit of a monitor, Monitors can also be
implemented with the help of a kernel of data structures and routines. A monitor kerne! may include special
primitives for entry, wait. and signal operations. Wirth (1977) proposed a Modula kemnel for implementing
monitors when using the language for parallel programming.

1| MESSAGE-PASSING PROGRAM DEVELOPMENT

Multicomputer programming demands the distribution of computational load and data
structures to various node processors for balanced parallel processing. Message-passing
paradigms are needed for internode communications. Over the last two decades, message-passing has gained
importance as a means of achieving distributed computing.

Three program/data decomposition techniques, namely. domain, control, and object decomposition, are
presented for programming a multicomputer. In each case, example problems are given to illustrate the
decomposition technique involved.

11.4.1 Distributing the Computation

The key to using a multicomputer system is to distribute the computations among an ensemble of computer
(processor-memory) nodes. Each node executes its own program, and all nodes are interconnected by a
network. Concurrent processes created at different nodes communicate by passing messages. In this section,
we assess the basic programming environment for multicomputers. We study program tuning to achieve load
balancing directed toward higher performance.

Parallel Program Development and Environments _— 53

Host and Node Environments The programming environment of a multicomputer may include an
optional host run-time system and resident operating systems in all node computers.

For example, a Cosmic Environment was developed for the hypercube computer at Caltech. The host
environment was a UNIX processor and used UNIX and language processor utilities to communicate with
the node processes and other host processes through messages.

A separate OS kernel was located in each node computer that supported multiprogramming, with an
address space confined to local memory. Many node processes could be created at each node. In fact, the total
number of node processes could be greater than the number of node computers in the system.

All node processes executed concurrently in different physical nodes or interleaved through
multiprogramming within the same node. Node processes communicated with each other by sending or
receiving messages.

The Cosmic kernel (later modified to the Reactive Kernel) at Caltech was one such node operating system
that supported this process-model programming.

There were no shared variables between node processes in the Cosmic kernel, even if they resided in
the same node. The node processes did not have access to input /output devices, and all [/0 activities were
handled by the hosts.

The Cosmic Cube programming environment did not use new programming languages. Existing sequential
programming languages such as C, Pascal, Fortran, Lisp, Assembly, etc. were used to write process codes.
A library of C functions and procedures was developed to control message-passing and process-spawning
operations.

This approach used explicit parallelism built on top of existing compiler technology. Many interesting
Cosmic features were built into or modified in commercial systems such as the Intel iPSC and nCUBE
computers. Various multicomputer programming environments differ mainly in the languages and message-
passing paradigms used,

In programming a multicomputer, the process involves separation of the user interface from the
computational kernel, leaving the user interface on the host or a designated node, moving the kernel to each
node, and adding a message interface between them.

In order to distribute the computation, the programmer chooses a decomposition method and then maps
the decomposition to all the nodes. A node-to-node communication protocol must be established. Finally, one
needs to balance the load and reduce the communication /computation ratio.

Message Types and Parameters Example 10.] demonstrated the nced for message passing. In a
multicomputer program, a process must distinguish between a number of different message types. A particular
field of all messages can be reserved to carry a message type (identified by an integer).

Different message types may demand different actions by the sending or receiving processes. Messages
of different types are handled in a specific order. For example, the Cosmic Environment/Reactive Kernel
dispatched messages according to the types received, and supported customized message functions on top of
the X-window primitives.

Let us examine the basic message parameters associated with send and receive system calls. The message-
passing primitives are specified by:

send (type, buffer, length, node, process)
receive (tvpe, buffer, length)

564" Wik Advanced Computer Architecture

where fype identifies the message type, buffer indicates the location of the message, length specifies the
Jength of the message (in bytes), node designates the destination node, and process is the process ID at the
destination node.

The send and receive primitives are used by the sending and receiving processes, respectively. Therefore,
the buffer field in send specifies the memory location of the message to be retrieved from. On the other hand,
the buffer field in receive specifies where the arriving message will be stored.

Once stored in a local memory, a message can be retricved only by the local processor. No remote memory
access is allowed in a pure message-passing multicomputer. The implementation requirements of the two
message-passing models are studied below.

11.4.2 Synchronous Message Passing

The message-passing process involves a sender and one or more receiver(s). When a process sends a message,
the system must decide a number of issues: first, whether the receiver should cooperate or be ready to recetve
it; second, whether the communication path has been established or not; and third, whether one or more
messages can be sent to the same destination node or to multiple destinations.

In a synchronous communication network, the seader process and receiver process must be synchronized
in time and space. Time synchronization means both processes must be ready before message transmission
can take place. Space synchronization demands the availability of a communication path, i.¢. a sequence of
connected channels from source to destination.

The simplest implementation allows only one message on a communication channel at a time. No buffers
are used in such a communication network. Therefore, blocking is possible if the channe! requested is busy
or in error. For this reason, synchronous message passing belongs to the class of blocking communication
systems. The correct protocol must be adopted to ensure the coupling of the sender and receiver in time and
space. Blocking may take place very often in such a network. How to minimize the delays caused by blocking
is a major issue to be considered.

Synchronous message handling simply ignores blocked messages, assuming no buffers are used with
the communication channels. This scheme has been implemented as one of two possible message-handling
modes in the Intel iPSC systems. The idea is to halt further execution of instructions in a process until the
desired message is sent or received. :

When a process issues a request to receive a message, the process, being blocked, executes no further
instructions until the expected message has been received. If the message arrives ahead of the request, the
receiver will wait only until the message is copied into the local memory from the system buffer in which it
was temporarily stored,

Similarly, when a sender initiates a message transfer, the sending process is blocked until the message
is copied from local memory into the message-passing network by the node kernel. Synchronous message
handling is easier to implement but may not result in the highest performance possible in a given network.

TheAda Experience Exampie synchronous message-passing programming systems include the unbuffered
Ada system, which uses a rendezvous concept to synchronize the sender with the recetver. In such a system,
the early arrival at the rendezvous must wait for the late arrival. Ada uses a name-addressing scheme in which
(Node, PID) is used to identify a process residing at a node.

Faralle! Program Development and Environments . 545

The Ada system allows two-way data flow during a single rendezvous. A process calls another process by
name without divulging its own identity. Ada implements a select primitive, which allows a process (task) to
conditionally select an entry call to execute among multiple entries.

Programming with the rendezvous concept can easily implement a remote procedure call (RPC) besides
the select option. It also supports dynamic task creation and priorities in task selection.

The Occam Experience The CSP (communicating sequential processes) model proposed by Hoare
employs a selective synchronous scheme based on a tightly synchronized fonm of message passing. In 1988
CSP was modified and called the Occam system by INMOS/Transputer developers, based on a channel-
addressing scheme. This scheme established a communication path between sender and receiver by directional
channel tracing. The Occam system used one-way data flow.

In a synchronous message-passing system, the number of completed receive operations is identical to the
number of completed send operations at the other end. The blocking problem can be avoided or alleviated
using buffers in the message-passing network.

Buffering is like a telephone systemn with an answering machine or like a fax machine. The sender and
receiver do not have to be availabie at the same time, and yet they can communicate with each other.

11.4.3 Asynchronous Message Passing

This programming paradigm requires the use of buffers on communication channels or the use of a global
mailbox. Message sending and receiving do not have to be synchronized in time or space. Nonblocking
communication is possible if sufficiently large buffers are used along the communication channels.

Blocked messages are buffered for later transmission. This system is like a postal service system using
many mailboxes as buffers. No synchronization is needed because the sender does not have to know if and
when a message is received. The receiver expecting a message will not be suspended from regular execution.

Even when we consider a buffered asynchronous system nonblocking, the system may eventually be
blocked due to the use of limited-size channel buffers. 1fthe network traffic is not heavy or saturated, moderate-
size buffers will lead to essentially nonblocking communications. Most advanced message-passing networks
use asynchronous communications for the sake of better resource utilization and shorter communication
delays. An arbitrary delay may result in a buffered communication scheme under very heavy load.

Caltech’s Cosmic programming environment supported asynchronous message passing. Intel’s iPSC
system also supported asynchronous message handling. Asynchronous receives allow processes to alert the
node kemn?®l that certain messages are expected and should be delivered as soon as they arrive.

In the meantime, the receiving process can continue its work if needed. An asynchronous send allow a
sender to alert the kernel that it wants to send a message, but the process does not wait until the message is
sent. Obviously, asynchronous communication is more efficient and sometimes faster.

The Linda Experience The Linda programming system also operates asynchronously. Uncoupling of the
sender and receiver in time and space is expected. Linda is based on a global mailbox or bulletin-board
concept for achieving asynchronous communications. This is done through the use of a ruple space, which is
logically shared by all concurrent processes.

The tuple space consists of tuples, which are typed data sequences. Any process can add a tuple to the
shared tuple space or remove a matching tuple from the space. If no match is found, the process suspends
until a match is found later. It can also read a copy of a matching tuple without removing it from the space.

566 ik Advanced Computer Architecture

In many ways, the tuple space behaves like a bulletin board where anybody can add a notice (tuple), read
a notice, or remove a notice. The tuple space, therefore, becomes a global mailbox which can be accessed by
all processes for the purpose of either sending, broadcasting, or receiving messages (tuples).

Concurrent programming works in Linda by pattern matching on the tuple signatures (tag fields). The
concept of tuple space can be implemented on either shared-memory multiprocessors or distributed-memory
multicomputers.

interrupt and Lost Messages Interrupt messages are a special form of asynchronous message handling.
Instead of continuing working while waiting for a regular message to arrive, interrupt handling is carried out
immediately by the receiver without having the receiving process post a receive when it is ready to receive.
After the interrupt is serviced, the interrupted process may resume its original work.

Messages are often lost in a message-passing system. When an incoming message is not expected or
needed, it may be ignored and thus lost. Messages directed to the wrong process or wrong node will not be
found or retrieved by the intended process, and the node kernel may not be able to cope with the problem.

These messages may end up in the system message buffers and eventually be lost. This may not be the
fault of a programmer. Special detection aid or debugging tools are needed to inspect message buffers and to
correct possible system configuration or programming erTors.

MAPPING PROGRAMS ONTO MULTICOMPUTERS =

This section describes program decomposition techniques based on data domains, control
structures, functionality, and object-oriented concepts. In all cases, we aim at performance
tuning and enhancement of message-passing programming. At the end, we characterize the environment for
heterogeneous programming.

11.5.1 Domain Decomposition Techniques

Programming a multicomputer requires three major steps: decomposition, mapping, and tuning. The goals
are to balance the load, minimize communication overhead, reduce sequential bottlenecks, and make the
program scalable. Decomposition of the 7 calculation is a perfect example of domain decomposition .

In general, if a calculation is based on a large, static data structure and the amount of work is about the
same for each data element, then one should partition the data structure evenly.

The resulting programming technique is called domain decomposition. This technique can be used with
a wide range of applications, including physical modeling, matrix computations, and database/knowledge
base management.

Perfect Decomposition To choose the best decomposition method for a given application, one needs
to understand the mathematical formulation, the data domain, the algorithm used, and the flow of control
(communication pattern). Certain applications fall naturally into the perfect decomposition category. Such
paralle! applications can be divided evenly into a set of processes that require little or no communication with
cach other.

This category is the easiest to decompose. The computation is a good example of a perfect decomposition
in which only the partial sums need to be communicated. The order in which these summations are performed
is immaterial, and thus interprocess synchronization is unnecessatry.

FParalle! Program Development and Environments - 547

Perfect decomposition often leads to SPMD operational mode. In other words, the same node program is
replicated at all the nodes. Real applications of this kind range from the modeling of proteins with thousands
of atoms and millions of possible configurations to financial speculation involving investments subject to
paraliel evaluation of multiple hypothetical portfolio cases simultaneously.

Perfect decomposition requires very little commumcation overhead, and the balanced computations often
result in nearly 100% efficiency. This kind of decomposition requires the least amount of programmer effort.

Often the same sequential program running on a single processor will be running on all node processors,
each with a different data set. Once an interprocess dependence relationship exists, the conditions for perfect
decomposition may be compromised.

Domain Decomposition The key to domain decomposition is the regufarity of the data structures involved.
Three kinds of problem domains are identified below as natural candidates for domain decompesition:

(1) Static data structure—For example, matrix factorization for solving a large finite-difference problem
" on a system with a regular network topology.

(2) Dynamic data structures tied to a single entit—For example, in a many-body problem, subsets of
the bodies can be distributed to different nodes. Through gravitational forces, the bodies may be
interacting with each other and moving in space. The calculation for each body can stay on the original
node assigned.

(3) Fixed domain with dvnamic computations within various regions of the domain—For cxample, a
program that models fluid vortices, where the domain stays fixed but the whirkpools move around.

Three major steps are specified below to decompose the domain of a given application:

(1) Distribute the subdomain of data to various nodes.
{2) Restrict the computation so that each node program updates its own subdomain of data.
(3} Put the communication in node programs.

The way to implement the above steps is first to port the sequential program to various nodes. The porting
procedure involves the following operations: Compile and test the existing sequential program on one node
and then run multiple copies of the same program on many nodes at once. after putting in the communication
commands required. Localize the node program execution over its own data. Finally, tune the program to
enhance the performance.

L)
& Example 11.8 LINPACK matrix factorization using domain

decomposition (Justin Rattner, Intel Scientific
Computers, 1990)

Gaussian elimination is often performed in factoring a square matrix in the LINPACK linear equations
package. The regular nature of this algorithm and the regularity of the domain make it inherently parallel and
suitable for domain decomposition.

Distributing the domain only requires partitioning the characteristic matrix into sections and distributing
them among the processor nodes. We will first examine the sequential LINPACK Gaussian elimination

568 il Advanced Computer Architecture

algorithm. After determining the matrix distribution. we then distribute the computation, resulting in a
parallel matrix factorization algorithm.

The LU factorization is a triply nested loop: The outer loop controls how much of the matrix remains to be
facterized. At each iteration, the remaining part of the matrix is a smaller submatrix in the lower right-hand
corner. The elimination process requires that information from one node be broadcast to all the other nodes.
A sequential factor algorithm in LINPACK is as follows:

Sequential Factor Algorithm
fori=1torn—1do
Find max[A(i,) to A(n,)] in ith column,
Swap rows to make A(}, /) the pivot,
Divide A(i + 1, iy to A(n, Dy by A(, i),
fori=i+1tondo
fork=i+1tonde
Ak, jy < Alk,)y — Ak,) < A, j)
end of k-loop
end of j-loop
end of i-loop

This sequential code can be exccuted directly on a single node. The next step is to distribute the matrix
elements. The matrix is distributed by columns among the processor nodes. The matrix domain is mapped to
the nodes so that all the processors own approximately the same number of columns of the matrix.

Figure 11.7 shows a column-wrapped mapping of a 12 x 12 matrix onto four processors. Once a column
becomes the pivot column, it requires no further computation. By using this column mapping, all processors
can be kept busy during most of the computation, and a new processor owns the pivot column at each step.

Column number of matrix
t 2 3 45 6 7 8 9 10111

7T

012 3 012 3012 3
Node number of multtcomputer

Fig.11.7 Column-wrapped mapping of a 12 x 12 matrix onto four nodes of a multicomputer (Courtesy of
Justin Rattner, Intel Scientific Computers, 1990)

“iraflel Program Development and Environments " 540

The parallel factor algorithm is designed to make the pivoting processor control the computation at each
outer-loop iteration. The processor owning the first column finds the pivot element, swaps the pivot row with
the first row, and divides the pivot column by the pivot, just as in the sequential factor algorithm.

After the first iteration, the pivot processor broadcasts the pivot column and the pivot row number as a
message to all the remaining processors. Any processor receiving this message swaps its pivot row with its
first row. Then all processors perform the remaining subtraction and scaling from each remaining column
simultaneously.

This parallel factorization algorithm is specified below, where » is the order of the matrix, N is the total
number of nodes, i is the global index, # is a local index with an initial value of 1, and p is the index of
the processor. The value of p is different for each processor and is in the range 0 < P < N. In addition, all
processors use the same node program as stated below.

Parallel Factor Algorithm
p « index of this processor
fori=1ton-1do
if (i — 1) mod N = p then
Find max in the Ath column
Swap row i and /& to make A(%, #) the pivot
Divide A(i + 1, i) to A(n, i) by A(, i)
Broadcast pivot column, A(i + 1, §) to A(n, D,
and pivot row number A
heh+1
else
Receive the pivot package
Swap rows
Scale and subtract the pivot column from each remaining column
end of i-loop

The above parallel algorithm is modified from the serial algorithm by the addition of a test to determine
the pivot processor and system calls to send (broadcast) the pivot information to all the processor nodes. This
simple change may result in a maximum speedup proportional to the number ¥ of processors used in the
multicomputer.

Performance Tuning From a successive pivoting point of view, the above algorithm is essentially
sequential. While a pivot column is being determined, all the remaining processors are waiting for it. When
the pivot is finally broadcast, all the processors can subtract in parallel and then proceed with the next pivot
node, etc.

From a performance point of view, the load is not fully balanced across the nodes. The sequentiat bottleneck
is in the successive pivoting processors. The mapping of the matrix columns in a modulo fashion has already
provided a better load balance than assigning adjacent columns to the same processor.

The performance can be further tuned by reordering the algorithm to speed up the pivot and broadcast
process, or by dividing the row in parallel instead of the column. Furthermore, one can change the granularity

510"“

Advanced Computer Architecture

by using a block algorithm to obtain fewer and longer messages, which will improve the communication/

computation ratio.

In other applications, such as seismic processing, finite-element analysis, vision integration, and
multidimensional complex FFT, the performance bottleneck is in different areas such as extensive
synchronization delays or dynamically changing data structures. In each case, performance tuning will be

focused differently.

11.5.2 Control Decomposition Techniques

When the domain and data structure are irregular or unpredictable, we cannot apply domain decomposition.
One alternative is to focus on distributing the flow of control of the computation rather than on distributing

the domain.

An example of a domain that is not suitable for domain decomposition is the irregular search space created
by a game tree where the branching factor varies from node to node. The search tree must be dynamically

assigned to maintain a balanced load.

In general, control decomposition is used for symbolic processing problems such as those in artificial
intelligence applications. In this section, we will study several control decomposition strategies, including

functional decomposition and a manager-worker approach.

Functional Decomposition An algorithm can be visualized as a set
of interconnected functional modules. The flow of control is indicated
by directed edges in the diagram. For small problems, these functional
modules tend to be executed sequentially, one after another. However,
large problems may have significant parallelism between the modules.

V)

Example 11.9 Image understanding
with functional

decomposition

Figure 11.8 shows an example of functional decomposition for image
understanding.

Image enhancement, edge detection, pattern recognition, and scene
and motion analysis are processed by four functional modules in a
pipelined fashion (with a feedback branch, if adaptively done) over a
sequence of image frames.

The functionality requires the application of different decomposition
techniques, depending on the data structures and computations
involved. One needs to add special message interfaces between
different functional modules.

Image Frame

Functional Module 1:

Edge Enhancement

Pecision
Block

Yes

Functional Module 2:
Edge detection

Decision
Block

Functional Module 3:
Pattern Classification

Decision

Block

No

Functional Module 4:
Scene and Motion Analysis

Decision
Block

Yes

Image Description

‘Fig.11.8 Functional decomposition

for image understanding

Paraffe! Program Development and Erwironments R o7

Usually different functional modules are assigned to different processor nodes. Some nodes will be
floating-point-intensive, some for symbolic manipulation, some for input /output activities, etc.

Manager-Worker Approach This is a divide-and-conquer technique. The idea is to divide the application
into tasks, not necessarily having the same size, and use one of the processes to serve as a manager node and
the rest as worker nodes.

As illustrated in Fig. 11.9, the manager is responsible for dispatching tasks out as worker nodes become
available. The manager must also communicate with the user or the host node for input/output operations.

Input/output

O Host Computer

Multicomputer

Fig. 11.9 = Manager-worker mapping for control decomposition (Courtesy of Justin Rattner, intel Scientific
Computers, 1990) :

The manager functions include management of global data structures. maintaining a list of subprograms
(tasks), and assigning problems/tasks to workers. The worker node, once it becomes available, should request
the job, receive the job, and perform the assigned task. The manager must perform dynamic load balancing
among the workers in order to enhance the performance of the entire system.

D)

A typical application of the manager-worker decomposition is to solve the N-queens problem on a
multicomputer. The problem is to find all possible solutions for placing N queens on an N x N chessboard so
that no more than one queen is on each row, each column, or each diagonal.

Example 11.10 Solving the N-queens problem on a
multicomputer

572" Nl Advanced Computer Architecture

In other words, each row, column, or diagonal must have exactly one queen and no queen can attack
-another, as illustrated in Fig. 11.10. The way the N-queen problem is solved is to generate a search tree using
the workers to solve each leaf node of the search tree.

Problem: Find all solutions for placing N queens on an N x N
chessboard so that there is exactly one gueen on each row,
each column, and each diagonal.

' Fig,11.10. N-queens problem:An example of manager-worker decomposition (Courtesy of Justin’ Rattner,
‘ intel Scientific Computers, 1990) B

The manager builds and maintains the top level of the search tree, assigns workers to build different
branches of the tree, and keeps track of the total number of solutions (chessboard patterns) generated. Each
worker should be able to split the problem into subproblems and to solve a subproblem.

Once a branch is too heavily extended, the worker can report to the manager which will off-load subtree
operations to other available nodes. Close communication between the manager and the workers is necessary
to keep up a well-belaneed processing of the search tree on a dynamic basis.

Performance Tuning One technique for tuning the performance is to use double-buffer messages in a
manager-worker decomposition. The idea is to send a worker two pieces of work the first time. As soon as
the worker is finished working on the first piece, another picce is readily available.

Once the communication /computation issues have been well balanced, the results from the first piece of
work are returned to the manager who can send over another piece of work before the worker finishes the
second piece. There is always one job waiting in the worker’s queue, and thus workers are kept busy all the
time.

A potential problem with the manager-worker approach is that the manager may become the bottleneck.
According to Intel iPSC experience, up to 50 workers managed by a single manager did not create a serious
bottleneck problem as long as a good communication /computation ratio was maintained.

Paraltel Program Development and Environments . 573

Clearly, for a multicomputer consisting of thousands of processors, the manager bottleneck problem can
become more serious. One can then consider providing a hierarchy of managers.

Another possible solution is to use floating managers or multitasking processors, which can execute both
a worker process or a manager process on the same processor. These options must be carefully analyzed and
experimented with before they can be adopted in real applications.

11.5.3 Heterogeneous Processing

In this section, we learn how to combine object-oriented programming with message-passing techniques for
distributed computing applications. We first characterize objects in relation to parallelism. Then we illustrate
the object decomposition concept using an air traffic control simulation example.

Finally, we present the concept of layered parallelism using a seismic monitoring example which involves
all the decomposition techniques we have learned. Such concepts may be needed to solve very large-scale
problems.

Objects and Parallelism The object-oriented approach to parallel programming offers a formal basis for
decomposing the data structures and threads of control in user programs. In what follows, we define objects
and reveal the relationship between objects and parallel processing.

[}
!]
E Object ;
! Data A set of stack-operation procedures: !
! i
! 1
i Top pstack = new{stack) i
1 Pointer i
i push(pstack, datum) !
! 1
1
' datum = pop(pstack) i
! |
i free(pstack) d

i
i Frrrrrzrrrwr i
1
: (Stack) An object E
!)

(a) Defining a stack as an object

Task A Task B esoes Task Z

Stack
Object

{b) Shared access to a stack object by multiple tasks

“Fig. 1111 - A stack cbject and its shared sécess by multple tasks |

574 W Advanced Computer Architecture

The idea of objects comes from data abstraction, in order to hide low-level details from programmers. An
object encompasses a set of logically related data and a set of procedures which operate on the object’s data,
as illustrated by the example in Fig. 11.11a.

The example shows that temporary storage in the form of a stack can be treated as an object consisting of a
last-in-first-out queue of data which can be pushed down or popped up in its management. It should be noted
that an object type (class) is conceptually different from instances of the object type.

Those instances, called objects, are the ones used in program execution. Only the object’s procedures
have access to the object’s data. A programmer can be freed from knowing the detailed implementation of
the objects.

This simplifies program debugging and testing efforts, and offers modularity in program development,
which are all desired features for parallel programming.

Shared data structures can be organized as objects. Shared access to a stack object by multiple tasks is
shown in Fig. 11.11b. A parallel program may be composed of multiple threads of execution that access both
private and shared data.

Threads of execution can be allocated as instances of a task type. If tasks must communicate by exchanging
messages, the shared object is accessed via message passing, which must be synchronized by a system-
defined class of queue objects.

Object Decomposition This technique offers natural advantages for parallel computers. It avoids the
use of global variables, simplifies the program/data partitioning process, and provides higher granularity of
interaction among objects through the use of predefined procedures for accessing objects.

Ada and C++ both support data abstraction in object-oriented programming on message-passing systems.
The following air traffic simulation system explains the key concepts behind object decomposition for
paratlel programming. The goal of the simulation is to measure the effects of scheduling, weather, etc., on
air traffic flow control.

b

Three fundamental object types are identified in Fig. 11.12. First, the airports contain information regarding
their location, runways, etc. Second, airplanes contain information related to position, velocity, fuel capacity,
etc. Third, air space sectors are pre-specified by the American Flight Agency.

Objects of these types are manipulated by four task types: The air dispatchers allocate airplanes and pilots
(scheduling). The pilots operate the airplanes. The air traffic controllers manage the safe use of airports and
airspace sectors to avoid collisions.

The tasks interact by invoking procedures on shared airplane, airport, and airspace objects. The
communication among the tasks and between tasks and objects can be simulated by a message-passing
multicomputer. Appropriate protocols must be established in these message-passing operations.

The use of multiple tasks with separate functions in this application is also an example of control
decomposition. The computational complexity of this air traffic simulation problem is controlled by
partitioning the airspace into sectors.

Example 11.11 Air traffic simulation on a multicomputer

Parallel Program Development and Envirenments .. 575

/ Task Types \

_ Airtine Airline Airline Sector
Dispatchers: Controliers: Pilots: Controllers:

UA LAX Smith Sector A
NW CHG Y 4 Sector B
AA SFO amamoto ector

[] [] L] >

L] [] L] [J

L] [3 L] L]

UA 101 Partitioned
NW 68 Aerospace
AA 1035 Sectors
SFC| |LGA JAL 37
: ,
sase H :
Airport Airplane Space Sector
Objects Objects Objects

L— Object Types ———/

Fig. 11.12 Air traffic simulation using decomposition techniques

The air traffic controller manages the separation of airplanes within each sector. When an airplane crosses
between two sectors, the controller must pass the duty to the next sector controller on the route of the flight.

Sector partitioning of the airspace is indeed a domain decomposition of the problem. Different sector
controllers are simulated at different nodes of a multicomputer. In order to conduct real-time simulations, all
the object information must be retrieved from the local memory without page faults from the backup store.

For example, distribution of the airports should be made to associate the airports and their controllers
within the same sector node. As airplanes fly from one airport to another, the objects are sent as messages
among nodes. Load balance can be achieved by defining the sector boundaries, interleaving sector objects, or
allowing sector migration dynamically as traffic becomes dense.

Heterogeneous Processing A growing trend in computing is to use a network of resources for
heterogeneous processing (HP). A large-scale complex problem can be solved by combining a number of
computers of various kinds in a network environment.

On a multicomputer-based network, HP can be practiced using a combination of decomposition techniques.
In what follows, we describe computations with embedded parallelism at various processing layers.

5 76'& Advanced Computer Architecture

Layered Decomposition In solving large and complex problems, we may have to employ a programatic
layered approach to extracting parallelism using different decomposition techniques at different levels. Such
an approach can be called layered decomposition.
The functional approach to image understanding (Fig. 11.8) canbe considered a four-layered decomposition.
As machine size reaches thousands of nodes, we have to develop programming techniques on that scale.
The layered approach certainly addresses the scalability problem with foresight. Example applications
include weather simulation, fiuid flow, structural analysis, molecular dynamics, and seismic monitoring.

L)
& Example 11.12 Heterogeneous processing based on
layered parallelism

The problem of seismic monitoring requires the processing of a large amount of seismic data using a layered
approach consisting of three levels, as illustrated in Fig. 11.13.

Real-time signals
received from
distributed
monitor sites

Parfect parallelism at top level
All input signals coming
from their own signal

Processors.
‘\
prmmaemnn- boemmomm oo :
i | H
' P)
' :
H Neural net i
H Signal Analysis it !
1 simulators !
i :
1 1
! i
! ! Functional
H " . Al Brocessors ' decomposition
: Symbolic Analysis p E commesponding to
H ! asequenca of Al
! 1 decision making
! i programs.
| Real” N :
\ : ° Database f
| Volcanl;: eve}—‘. Sors E
i -~ '
! Yas)
1]
i 1
i '
H Real-time Intelligence !
H Interpreter interpratation !
l '
: I
! 1
__ '

l - 1 Domain
decomposition for
distributed

Data 1 | Data2 sese Data n interpretation of real-
H time data

{Massive parallelism})

“Fig. 113, Liyered parallelismi in decomposing the seismic moritoring problem for heterogeneous processing

Farallel Progrom Development and Environments . 577

At the highest level, perfect parallelism is expected because real-time signals come in from monitors
located at various sites using separate processors mostly running with Fortran seismic code.

Once the seismic signals are cleaned up by the distributed processors, we need to use a middle level of
functional decomposition corresponding to a sequence of Al decisions.

Finally, the interpretation of real-time data may require domain decomposition for each signal domain.

Different types of computers are used at different levels in the layered approach. The monitor processors
used at the top level are nothing but separated signal processors with numeric, Fortran, and vector processing
capabilities.

The functional decomposition may use neural simulators, Lisp processors, or other symbolic machines
with extended memory and intelligence interpretation capabilities.

The bottom level of domain decomposition demands a higher degree of parallelism if the survey sites are
numerous. Graphics/visualization capabilities are needed te interpret the final results. The above example
presents a typical case of heterogeneous processing in a network environment.

]
I Summary

In this chapter, we studied software environments and program development techniques for parailel
computers. Parallel programming languages must address important issues such as compatibility,
expressiveness, ease of use, efficiency, and portability; and usually there are trade-offs involved while addressing
these issues. Parallel programming environments must provide the required tools for program design,
debugging, visualization, performance monitoring and tuning, input/output, and communicati_bn.As specific
examples, we studied the Cray Y-MP, Paragon and CM-5 paraliel programming environments. '

The closely related issues of synchronization and multiprocessing modes are central to any parallel
processing environment.We studied the basic principles of synchronization in terms of atomic operations,
wait protocols, fairness policies, and sole-access protocols. Multiprocessing requires fast context-switching and
efficient synchronization. Multitasking may be seen as one variant of multiprocessing; depending on its
granularity, it may be dubbed macro-tasking or micro-tasking. The multitasking mechanism provided on
Cray multiprocessors was studied as a specific example.

One important model of parallel programs is the shared variable model. Since multiple paraflel processes
access shared variables in memory, locks can be employed for achieving protected access. A fock may
be implemented as a spin lock or a suspend lock. Semaphores provide a higher level of synchronization
mechanism than locks. The two basic operations on a semaphore s are P(s) and V(s). Monitors provide a
stili higher level of synchronization, encapsulating both shared variables and the permitted operations on
them. Ve studied these synchronization mechanisms with the help of example applications.

Another equally important model of parallel programs is the message-passing model, in which the
various processes running in parallel—on multipie processors—do not in general share main memory.
Program development for multicomputers under this model must also address the issue of distributing
the computation over avaitable nodes, since this distribution determines the demands made on the
message-passing subsystem, and thereby the overall system performance. In this context, the advantages

578 ik

Advanced Computer Architecture

and disadvantages of synchronous versus asynchronous message passing were discussed, although it is
true that the asynchronous model is more widely used. o

Decomposition techniques are needed for mapping programs onto muiticomputers. Domain
decomposition and control decompasition techniques were described in this chapter, with several specific
examples. The concept of heterogeneous processing was introduced.

(N6

Exercises

Problem 11.1 Explain the following terms
associated with fast and efficient synchronization
schemes on a shared-memory multiprocessor:
(a) Busy-wait versus sleep-wait protocols for
sole access of a critical section.
(b) Fairness policies for reviving one of the
suspended processes waiting in a queue,
(¢) Lock mechanisms for pre-synchronization to
achieve sole access to a critical section.
(d) Optimistic concurrency or the
synchronization method.

post-

(e) Server synchronization and the corresponding
synchronization environment.

Problem 11.2 Distinguish between spin locks and
suspend locks for sole access to a critical section.
Generalize Dekker's protocol from two procedures
to three or more procedures sharing critical
sections. Also implement the generalized Dekker's
protocol using the Test&Set atomic operation.

Problem 11.3 There are many ways to solve
the mutual exclusion problem based on different
implementation schemes, such as the use of spin
locks or Dekker's protocol. Describe the following
schemes:
(a) Implementing mutually exclusive access to a
critical section using binary semaphores.
(b) Implementing mutual exclusion using a monitor
called by processes competing for access to a
critical section.

Problem 11.4 Dijkstra [Dijkstra68] has defined
the well-known dining philosophers problem: There
are five philosophers dining around a table as shown.

e
¢ A
oo
¥ o
@

Each of the philosophers engages in only two
activities, thinking or eating, as characterized below
as process Rfori=1,2,...,5.

P;: begin

loop
Think
Fetch protocol
Eat
Release protocol

endloop

end

Paralle! Program Development and Envirenments

A bowl with an endless supply of spaghetti is
placed in the center of the table. Each philosopher is
given a plate. There are five forks on the table, one
between adjacent philosophers. Each philosopher
enters a thinking period while not eating. In order
to be able to eat, the philosopher must get hold of
two neighboring forks from his left and right sides.
The fetch protocol specifies how each of the forks will
be picked up. The refease protocol specifies how the
forks will be released after eating. Each philosopher
is allowed to pick up one fork at a time from his left
or from his right side. Each fork can be used by only
one philosopher at a time. No fork can be passed
around the table, and a fork must be put back where
it was picked up.

The probiem is to design the fetch protocol and
the release protocol for the philosophers so that no
deadlock will occur. A deadlock means a circular
wait situation in which each philosopher holds one
fork and refuses to release it. A deadlock means
starvation, so we should avoid it in the solution.

(a) Use the P and V operators and binary
semaphores to specify the fetch and release
protocols. One semaphore can be used to
represent the fork on the right, and another
semaphore to represent the fork on the left.
The purpose of the protocols is to prevent
deadlock from eccurring so that ne individual
starvation will occur. Initially, all the forks are
placed on the table corresponding to an initial
value of 1 for the semaphores. When a fork is
picked up, its semaphore is changed to a value
of 0.

{b} Design a monitor to control the fetch and
release of the forks. In this case, the fetch and
release are each specified by a procedure in
the monitor. Also, specify the philosophers as
user processes calling the monitor to claim
forks. Again, no deadlock or starvation is
allowed under the same assumption made in

part (a).

_— oy

Problem 11.5 Explain why mutual exclusion, non-
preemption, wait for, and dirculor wait are necessary
conditions but not sufficient conditions for a system
deadlock to occur. Also distinguish among the
deadlock prevention, avoidance, detection, and recovery
schemes. Comment on their implementation costs
and expected performances.

Problem 11.6 Five concurrent processes
are specified below using four resource types
represented by four semaphores. Answer the
following questions with reasoning and justification.

Begin
shared record
begin
var 54, 53, $3, $4: semaphore;
var blocked, unblocked: integer;
end
initial blocked = 0, unbiocked = 1;
initial 5,= 5, = $3 = unblocked; 54 = blocked;
cobegin
A: begin P(5,);V(5:); P(S,):V(5;): end;
B: begin P(S;); P(5:);V(54):V(5:):V(S4): end;
C: begin P(5;); P(53);V(52);V(S3); end;
D: begin P(5,); P(S2); P(51):V(54);V(52); end;
E: begin P(53); P(Sy); V(S2):V(S3); end;
coend
End

(2) Is a deadiock possible among the five code
segments represented by A, B, C, D, and E?
Which subset of code segments may enter a
deadlock on what resources?

(b) If the deadlock situation does occur in part
(a), what additional code segments could be
indefinitely blocked?

(¢) Is a deadlock inevitable or does it depend
on race conditions? Justify your answer with
reasoning using a resource allocation graph.

(d) Make a minor change in one program segment

550" Nl

to prevent a deadlock from occurring. Justify
the claim with a resource allocation graph
similar to Fig. 11.5.

Problem 11.7 Scheduling access to a moving-
head disk can be implemented by a monitor. The
implementation consists of three components: user
processes which request, access, and release the
disk service; a disk scheduler which performs the
scheduling of disk data to be accessed by one user
at a time; and driver procedures that perform actual
data transfer,

(a) Write a monitor to implement the disk
scheduler. The monitor should consist of two
procedures, one for a request for and one for
a release from disk access.

(b) Specify how a user process can call the
monitor for disk access. The disk driver
procedures are considered given.

Problem 11.8 Write a monitor as a barrier
counter for the synchronization of n concurrent
processes, The barrier counter should be resettable,
and a user process should be specified to call the
monitor when it reaches the barrier. Note that
local and shared variables must be declared and
initialization of iocal data must be given.

Problem 11.9 Answer the following questions
on decomposition techniques for message-passing
programming on muiticomputer nodes:

(a) What is a perfect decomposition! Explain
the advantages and discuss the differ-
ences in program replication technigques on
multicomputers as opposed to program
partitioning on multiprocessors.

(b) Based on data domain, algorithm used, and
flow of control in applications, distinguish the
opportunities for applying domain, control,
and object decomposition techniques in
distributed computing on multicomputers.

Problem 11.10 The N-queens problem (Fig. 11.10)
was introduced along with the manager-worker
approach to control decomposition in programming

Advanced Computer Architecture

a multicomputer. Suppose N = 8. There are 92
possible solutions to the 8-queens problem.
(a) Write a program that searches for a

solution. First run the program on a sequen-
tial computer (such as on a workstation or
even a personal computer). Record the time
required to conduct the sequential search. A
sequential search involves backtracking once
an impossible configuration is exposed. The
backtracking step systematically removes
the current emplacements of the queens and
then continues with a new emplacement.

(b) Develop a parallel program to run on a
message-passing multicomputer if one is
available. For a concurrent search for solutions
to the N-queens problem, backtracking is not
necessary because all solutions are equally
pursued.A detected impossible configuration
is simply discarded by the node. Observe
the dynamics of the concurrent search
activities and record the total execution time.
Compare the measured execution time data
and comment on speedup gain and other per-
formance issues.

Problem 11.11 The traveling salesperson problem
is to find the shortest route connecting a set of
cities, visiting each city only once. The difficulty is
that as the number of cities grows, the number of
possible paths connecting them grows exponentially.
In fact, (n — 1)!/2 paths are possible for n cities. A
parallel program, based on simulated annealing, was
developed by Caltech researchers Felten, Karlin, and
Otto [Felten85] for solving the problem for 64 cities
grouped in 4 clusters of 16 each on a multicomputer.
(2) Kallstrom and Thakkar (1988) implemented
the Caltech program in C language on
an iPSC/1 hypercube computer with 32
nodes. Study this C program for solving
the traveling salesperson problem using a
simulated annealing technique. Describe the
concurrency opportunities in performing the
farge number of iterations (such as 60.000)

per temperature drop.

Paraltel Program Development and Environments

(b) Rerun the code on a modern message-passing
multicompurter. Check the execution time and
performance results and compare them with
those reported by Kallstrom and Thakkar. You
will need to modify the code in order to run
on a different machine.

Problem 11.12 Choose an example program
to demonstrate the concepts of macrotasking,
microtasking, and autotasking on a Cray-like
multiprocessor supercomputer. Perform a tradeoff
study on the relative performance of the three
multitasking schemes based on the example program
execution, Make reasonable assumptions as needed,
as in Example 11.1.

Problem 11.13 Worite a multitasked vectorized
code in Fortran 90 for matrix multiplication using
four processors with a shared memory. Assume
square matrices of order n = 4k. The entire data set
is available from the shared memory.

Problem 1114 Design a message-passing
program for performing fast Fourier transform (FFT)
over 1024 sample points on a 32-node hypercube
computer. Both host and node programs should be
specified, including all communication commands.
Initially each node holds 32 sample points without
duplicating the data set. The results should be sent
to the host for output.

Problem 11.15 A typical two-dimensional image
is represented by a rectangular array of pixels
(picture elements). Each pixel (i, j) is represented by
2 logob bit integer corresponding to the gray level
{between 0 and b — 1} at coordinate (i, j) of a black

- 5l

-and-white picture. Histogramming is a process to
count the frequency of occurrences of each gray
level. Let histog(0 : b ~ 1) be the array of a histogram
of b gray levels.

The foltowing serial code is written for histogram-
ming on a uniprocessor system:

Var pixel((:m—1,0:n — 1);
Var histog(C : b — 1): integer;
histog(0:b — 1) = 0;
fori=0tom-1do
forj=0ton-1do
histog(pixel(i, /)) = histog(pixel(,j)) +1

The time complexity {number of counts) of this
serial program is O{mn), where mn corresponds to
the image size.

Partition the image, pixel{i, j) for 0 < i< m — 1
and 0 < j < n - 1into p disjoint segments, where
each segment has m/p = s rows of the image.
Develop a parallel program which can spawn a set
of p processes to histogram the entire image. The
p concurrent processes share the same histogram
array histog(0:b —1).

(a} Use the Doall and Endall statements to
specify a parallel program for counting the
histogram simultaneously on a p-processor
system with shared memory.

(b) What is the potential speedup of the parallel
program over the above serial program?
You can ignore the image I/O overhead by
assuming the entire image database is in the
main memory.

Part 'V

Instruction and System Level

Parallelism

Chapter 12
Instruction Level Parallelism

Chapter 13
Trends in Parallel Systems

Summary

The basic concepts of parallet computer systems-—theoretical formulations, hardware architecture, and
programming models-—have been discussed in detail in Parts | through IV of the book. The decades of
1970s and 1980s generated a great many innovative ideas in computer architecture. Since then, over the
last couple of decades, the technologies underlying computer architecture—VLS|, storage, interconnects,
and so on—have seen huge advances, and these have had a huge impact on computer architecture At the
same time, the range of applications of computer systems has also grown enormously.

Against this background, Chapter 2 discusses the important topic of instruction level parallelism (ILP),
which has a crucial bearing on processor design. We see that the issue of exploitation of ILP is a system
design issue, and we also discuss the limitations which are encountered in exploiting ILP in real-life
applications.

Chapter |3 discusses recent trends in parallel computer systems—for this, however, it is also necessary
to discuss in brief the technological advances which have impacted computer architecture. Some basic
concepts related to parallel algorithms are discussed, and a number of case studies are presented of
processors, systems-on-a-chip, and massively parallel systems.The parallel programming language Chapel
is introduced, as also function libraries which have been developed for writing paraltel programs.

12

Instruction Level Parallelism

INTRODUCTION

The period between the 1970s and the 1990s saw a great many innovative ideas being proposed
in computer architecture. The basic hardware technology of computers had been mastered by
the 1960s, and several companies had produced successful commercial products. The time was therefore
right to generate new ideas, to reach performance levels higher than that of the original single-processor
systems. As we have seen, parallelism in its various forms has played a central role in the development of
newer architectures.

The earlier part of this book has presented a comprehensive overview of the many architectural innovations
which had been attempted until the early 1990s. Some of these were commercially successful, while many
others were not so fortunate—which is not at all surprising, given the large variety of ideas which were
proposed and the fast-paced advances taking place in the underlying technologies.

In the last two chapters of the book, we take a look at some of the recent trends and developments
in computer architecture—including, as appropriale, a brief discussion of advances in the underlying
technologies which have made these developments possible. In fact, we shall sec that the recent advances
in computer architecture can be understood only when we also take a look at the underlying technologies.

What is computer architecture?

(a) We define computer architecture as the arrangement by which the various system building blocks—
processors, functional units. main memory, cache, data paths, and so on- —are interconnected and inter-
operated to achieve desired system performance.

(b) Processors make up the most important part of a computer system. Therefore, tn addition to (a),
processor design also constitutes a central and very important clement of computer architecture.
Various functional elements of a processor must be designed, interconnected and inter-operated to
achieve desired processor performance.

Svstem performance 1s the key benchmark in the study of computer architecture. A computer system
must solve the real world problem, or support the real world application, for which the user is installing
it. Therefore, in addition to the theoretical peak performance of the processor. the design objectives of any
computer architecture must also include other important criteria. which include system performance under

586 Mkl Advanced Computer Architecture

realistic load conditions, scalability, price. usability, and reliability. In addition, power consumption and
physical size are also often important criteria.

A basic rule of system design is that there should be no performance bottlenecks in the system. Typically,
a performance bottleneck arises when one part of the system—i.e. one of its subsystems——cannot keep
up with the overall throughput requirements of the system. Such a performance bottleneck can occur in a
production system., a distribution system, or even in traffic system!']. If a performance bottleneck does occur
in a system—i.e. if one subsystem is not able to keep up with other subsystems—then the other subsystems
remain idle, waiting for response from the slower one.

In a computer system, the key subsystems are processors, memories, I/0 interfaces, and the data paths
connecting them. Within the processors, we have subsystems such as functional units, registers, cache
memories, and internal data buses. Within the compulter system as a whole—or within a single processor—
designers do not wish to create bottlenecks to system performance.

1)

In Fig. 12.1 we see the schematic diagram of a simple computer system consisting of four processors, a large
shared main memory, and a processor-memeory bus.

Example 12.1 Performance bottleneck in a system

—

Shared main -
memory F—

Four
processors

Processor-
memory bus

Fig. 12.1 A simple shared memory multiprocessor system

For the three subsystems, we assume the following performance figures:

(i) Each of the four processors can perform double precision floating point operations at the rate of 500
million per second, i.e. 560 MFLOPs.
(ii) The shared main memory can read write data at the aggregate rate of 1000 million 32-bit words per
second.
(iii) The processor-memory bus has the capability of transferring 500 million 32-bit words per second to/
from main memory.

™ Iy common language, we say that a chain is only as strong as its weakest link,

Instruction Level Parallelism - g7

This system exhibits a performance mismatch between the processors. main memory, and the processor-
memory bus. The data transfer rates supported by the main memory and the shared processor-memory bus do
not meet the aggregate requirements of the four processors in the system.

The system architect must pay careful attention to all such potential mismatches in system design.
Otherwise, the sustained performance which the system can deliver can only equal the performance of the
slowest part of the system—i.e. the bottleneck.

While this is a simple example, it illustrates the key challenge {acing system designers. It is clear that, in the
above system, if processor performance is improved by, say, 20%, we may not see a matching improvement
in system performance, because the performance bottleneck in the systemn is the relatively slower processor-
memery bus. In this particular case, a better investment for increased system performance could be (a) faster
processor-memory bus, and (b) improved cache memcry with each processor. i.e. one with better hit rate—
which reduces contention for the processor-memory bus.

In fact, as we shall see, even achieving peak theoretical performance is not the final goal of system design.
The system performance must be maintained for real-life applications, and that too in spite of the enormous
diversity in modem applications.

In earlier chapters of the book, we have studied the many ways in which parallelism can be introduced
in a computer system, for higher processing performance. The concept of instruction level parallelism and
superscalar architecture has been introduced in Chapter 6. In this chapter, we take a more detailed look at
instruction level parallelism.

:' 'BASIC 'DES'!GP‘-"'SSQES L

As we have seen in Chapter 6, a linear instruction pipeline is the basic structure which exploits
instruction level parallelism in the executing sequence of machine instructions. We have also
discussed in brief how further hardware techniques can be employed with a view to achieve superscalar
processor architecture—i.e. multiple instruction issues in every processor clock cycle. In this chapter, we
shall study these and other related concepts in some more detail.

Instruction pipeline and cache memory (or multi-level cache memories) hide the memory access latencies
of nstruction execution. With multiple functional units within the processor, superscalar instruction
execution rates-—greater than one per processor clock cycle—can be targeted, using multiple issue pipeline
architecture. The aim is that the enormous processing power made possible by VLSI technology must be
utilized to the full, ideally with each functional unit producing a result in every ciock cycle. For this, the
processor must also have data paths of requisite bandwidth—within the processor, to the memory and VO
subsystems, and to other processors in a multiprocessor system.

With a single processor chip today containing a billion (10°) or more transistors, system design is not
possible in the absence of a target application. For example, is a processor being designed for intensive
scientific number-crunching, a commercial server, or for desktop applications?

One key design choice which appears in such contexts is the following,

Should the primary design emphasis be on:

(a) exploiting fully the parallelism present in a single instruction stream, or

589 i Advanced Computer Architecture

(b} supporting multiple instruction streams on the processor in multi-core and/or multi-threading mode?

This design choice is also related to the depth of the instruction pipeline. In general, designs which aim to
maximize the exploitation of instruction level parallelism need decper pipelines; up to a point, such designs
may support higher clock rates. But. beyond a point, decper pipelines do not necessarily provide higher net
throughput, while power consumption rises rapidly with clock rate, as we shall also discuss in Chapter 13.

Let us examine the trade-off involved in this context in a simplified way:

total chip area = number ¢f cores X chip area per core
or
total transistor count = number of cores X transistor count per core

Here we have assumed for simplicity that cache and interconnect area—and transistor count—-can be
considered proportionately on a per core basis.

Ata given time, VLSI technology limits the left hand side in the above equations, while the designer must
select the two factors on the right. Aggressive exploitation of instruction level parallelism, with muluple
functional units and more complex control logic, increases the chip area-—and transistor count—per processor
core. Alternatively, for a difterent category of target applications, the designer may select simpler cores. and
thereby place a larger number of them on a singie chip.

Of course system design would involve ssues which are more complex than these, but a basic design issue
is seen here: For the targeted application and performance. how should the designers divide available chip
resources among processors and, within a single processor, among its various functional elements?

Within a processor, a set of mstructions are in various stages of execution at a given time— within the
pipeline stages, functional units, operation buffers, reservation stations, and so on. Recall that functional units
themselves may also be internally pipelined. Therefore machine instructions are not in general executed in
the order in which they are stored in memory, and all instructions under execution must be seen as ‘work in
progress’.

As we shall see, to maintain the work flow of instructions within the processor, a superscalar processor
makes use of branch prediction—-i.e. the result of a conditional branch instruction s predicted even before
the instruction executes —so that mstructions from the predicted branch can continue to be processed, without
causing pipeline stalls. The strategy works provided fairly good branch prediction accuracy is maintained.

But we shall assume that instructions ate committed in order. Here committing an instruction means that
the instruction is no longer ‘under execution’—the processor state and program state reflect the completion
of all operations specified in the instruction.

Thus we assume that, at any time, the set of committed instructions correspond with the program order
of instructions and the conditicnal branches actually taken. Any hardware exceptions generated within
the processor must reflect the processor and program state resulting from instructions which have already
committed.

Parallelism which appears explicitly in the source program, which may be dubbed as structural paralielism,
is not directly related to instruction level parallelism. Parallelism detected and exploited by the compiler is a
form of instruction level parallel:sm, because the compiler generates the machine instructions which result in
parallel execution of multiple operations within the processor. We shall discuss in Section 12.3 some of the
main issues related to this methed of exploiting instruction level parallelism.

instruction Leve! Parallelism : o 589

Parallelism detected and exploited by processor hardware on thie fly, within the instructions which are under
execution, is certainly instruction level parallelism. Much of the remaining part of this chapter discusses the
basic techniques for hardware detection and exploitation of such parallehsm, as well as some related design
tradc-ofts.

While the student is expected to be familiar with the basic concepts rzlated to instruction pipelines, the
earlier discussion of these topics in Chapter 6 will serve as an introduction to the techniques discussed more
fully in this chapter.

Weak memory consistency models, which are discussed elsewhere in the book, are not discussed explicitly
in this chapter, since they are relevant mainly in the case of parallel threads of execution distributed over
multiple processors. Similarly—since the discussion in this chapter is primarily in the context of a single
processor—the issues of shared memory, cache coherence, and message-routing are also not discussed here.
The student may refer to Chapters 5 and 7, respectively, for a discussion of these two topics.

With this background, let us start with a statement of the basic system design objective which is addressed
in this chapter.

PROBLEM DEFINITION

Let us now focus our attention on tke execution of muchine instructions from a single
sequential stream. The instructions are stored in main memory in program order, from where
they must be fetched into the processor, decoded. executed, and then committed in program order. In this
context, we must address the problem of detecting and exploiting the parallelism which is implicit within the
instruction stream. :

We need a prototype insiruction for our processor. We assume that the processor has a foad-store type of
instruction set, which means that all arithmetic and logical operations are carried out on operands which are
present in programmable registers. Operands are transfarred between main memory and registers by foad and
store instructions only.

We assume a three-address instruction format, as seen on most RISC precessors, so that a typical instruction
tor arithmetic or logical operation has the format:

opcode operand-1 operand-2 result

Our aim is to make the discussion independent of any specific instruction set, and therefore we shall use
simple and self-explanatory opcodes, as needed.

Data transfer instructions have only two operands—source and destination registers; fload and store
instructions to/from main memory specify one operand in the form of a memory address, using an available
addressing mode. Effective address for Joad and store is calculated at the 1ime of instruction execution.

Conditional branch instructions need to be treated as a special category. since each such branch presents
two possible continuations of the instruction stream. Branch decision iz made only when the instruction
executes; at that time, if instructions from the branch-not-taken are in the pipeline, they must be flushed. But
pipeline flushes are costly in terms of lost processor clock cycles. The pavoff of branch prediction lies in the
fact that correctly predicted branches allow the detection of parallelism to stretch across two or more basic

590 Ml Advanced Computer Architecture

blocks of the program, without pipeline stalls, It is for this reason that branch prediction becomes an essential
technique in exploiting instruction level parallelism.

Limits to detecting and exploiting instruction level parallelism are imposed by dependences between
instructions. After all, if ¥ instructions are completely independent of each other, they can be executed
in parallel on N functional units—-if N functional units are available—and they may even be executed in
arbitrary order.

But in fact dependences amongst instructions are a central and essential part of program logic. A dependence
specifies that instruction I, must wait for instruction {; to complete. Within the instruction pipeline, such a
dependence may create a hazard or stall—i.e. lost processor clock cycles while I, waits for I; to complete.

For this reason, for a given instruction pipeline design and associated functional units, dependences
amongst instructions limit the available instruction Jevel parallelism—and therefore it is naturai that the
central issue in exploiting instruction level parallelism is related to the correct handling of such dependences.

We have already seen in Chapter 2 that dependences amongst instructions fall into several categories; here
we shall review these basic concepts and introduce some retated notation which will prove useful.

Data Dependences

Assume that instruction [y follows instruction I, in the program. Data dependence between [; and I means
that both access a common operand. For the present discussion, let us assume that the common operand of I;
and I, is in a programmable register. Since each instruction either reads or writes an operand value, accesses
by I; and Iy to the common register can occur in one of four possible ways:

Read by I after read by 1
Read by I, after write by |

Write by I, after read by 1,
Write by I, after write by [,

Of these, the first pattern of register access does not in fact create a dependence, since the two instructions
can read the common value of the operand in any order.

The other three patterns of operand access do create dependences amongst instructions. Based on the
underlined words shown above, these are known as read after write (RAW) dependence, write after read
(WAR) dependence, and write after write (WAW) dependence, respectively.

Read after write (RAW) is true data dependence, in the sense that the register value written by instruction [; is
read—i.e. used— by instruction I This is how computations proceed; a value produced in one step is used
further in a subsequent step. Therefore RAW dependences must be respected when program instructions are
executed. This type of dependence is also known as flow dependence.

Write after read (WAR) is known as anti-dependence, because in this instance instruction Iy should not
overwrite the value in the common register until the previous value stored therein has been used by the prior
instruction [; which needs the value. Such dependence can be removed from the executing program by simply
assigning another register for the write instruction [to write into. With read and write occurring to two
different registers, the dependence between instructions is removed. In fact, this is the basis of the register
renaming technique which we shall discuss later in this chapter.

Instruction Level Paraffelism b 591

Write after write (WAW) is known as output dependence, since two instructions are writing to a common
register. If this dependence is violated, then subsequent instructions will see a value in the register which
should in fact have been overwritten—i.e. they will see the value written by I rather than I This type of
dependence can also be removed from the executing program by assigning another target register for the
second write instruction, i.e. by register renaming.

Sometimes we need to show dependences between instructions using graphical notation. We shall use
small circles to represent instructions, and double line arrows between two circies to denote dependences.
The instruction at the head of the arrow is dependent on the instruction at the tail; if necessary, the type of
dependence between instructions may be shown by appropriate notation next to the arrow. A missing arrow
between two instructions will mean explicit absence of dependence.

Single line arrows will be used between instructions when we wish to denote program order without any
implied dependence or absence of dependence.

Figure 12.2 illustrates this notation.

h l | (Y |

RAW(R .} WAR(R WAW(R no program

dependence | order
I I e or he

Fig.12.2 Dependences shown in graphical notation (R, indicates register)

When dependences between multiple instructions are thus depicted, the result is a directed graph
of dependences. A node in the graph represents an instruction, while a direcred edge between two nodes
represents a dependence.

Often dependences are thus depicted in a basic block of instructions— i.¢. a sequence of instructions with
entry only at the first instruction, and exit only at the last instruction of the sequence. In such cases, the graph
of dependences becomes a directed acyclic graph, and the dependences define a parrial order amongst the
instructions.

Part {a) of Fig. 12.3 shows a basic block of six instructions, denoted I, through I in program order. Entry
to the basic block may be from one of multiple points within the program. continuation after the basic block
would be at one of several points, depending on the outcome of conditional branch instruction at the end of
the block.

Part (b) of the figure shows a possible pattern of dependences as they may exist amongst these six
instructions. For simplicity, we have not shown the type of each dependence, e.g. RAW(R;), etc. In the
partial order, we see that several pairs of instructions-—such as (I}, [3) and (I, I4}—are not related by any
dependence. Therefore, amongst each of these pairs, the instructions may be executed in any order, or in
parallel.

Dependences amongst instructions are inherent in the instruction stream. For processor design, the
important questions are: For a given processor architecture, what is the effect of such dependences on processor
performance? Do these dependences create hazards which necessitate pipeline stalls and/or flushes? Can
these dependences be removed on the fly using some design technique? Can their adverse impact be reduced?

592' " i— Advanced Computer Architecture

O—O—O—xX

la
I
C) g {b} partial order of dependences
lg
,/' \ (a) program crder

Fig.12.3 A basic block of six instructians

Consider once again the pattern of dependences shown in Fig. 12.3(b). If the processor is capable of
completing two (or more) instructions per clock cycle. and if no pipeline stalls are caused by the dependences
shown, then clearly the six instructions can be completed in three consecutive processor clock cycles.
Instruction latency, from fetch to commit stage, will of course depend on the depth of the pipeline.

Control Dependences In typical application programs. basic blocks tend to be small in length, since
about 15% to 20% instructions in programs are branch and jump instructions, with indirect jurmps and refiras
from procedure calls also included in the latter category. Because of typically small sizes of basic blocks in
programs, the amount of instruction level parallelism which can be exploited in a single basic block is limited.

Assume that instruction [is a conditionai branch and that, whether another instruction I, executes or not
depends on the outcome of the conditional branch instruction ;. In such a case, we say that there is a controf
dependence of instruction I en instruction [,

Let us assume that a processor has instruction pipeline of depth eight, and that the designers target
superscalar performance of four instructions completed in every clock cycle. Assuming no pipeline stalls,
the number of instructions in the processor at any one time-—in its various pipeline stages and functional
units—would be 4 < 8 = 32,

If 15% to 20% of these instructions are branches and jumps, then the execution of subsequent instructions
.within the processor would be held up pending the resolution of conditional branches, procedure returns, and
so on—causing frequent pipeline stalls,

This simple calculation shows the potential adverse impact of conditional branches on the performance
of a superscalar processor. The key question here is. How can the processor designer mitigate the adverse
impact of such control dependences in a program?

Instruction Level Parallefism w—- 593

Answer: Using some form of branch and jump prediction—i¢. predicting earlv and correctly {most of
the time} the results of conditionat branches, indirect jumps, and procedure returns. The aim is that, for cvery
correct prediction made, there should be no lost processor ciock cyeles due to the conditional branch, indirect
Jump, or procedure return. For every mis-prediction made, there would be the cost of flushing the pipeline of
instructions from the wrong continuation after the conditional branch or jump.

Ob)

Assume that we have aitained 3% accuracy in branch prediction in a processor with eight pipeline stages.
Assume also that the mis-prediction penalty is 4 processor clock cveles to flush the instruction pipeline. What
is the performance gain from such a branch prediction strategy?

Recall that the expected cost of a random variable X is given by Zx; p,. where v, are possible values of
X, and p; are the respective probabilities. In our case. the probability of a correct branch is 0.93. and the
corresponding cost is zero; the probability of a wrong branch is 0.07. and the corresponding cost is 2. Thus
the cxpected cost of a conditional branch instruction is 0.07 x 4 = 0.28 clock cycle i.e. much less than one
clock cycle,

Example 12.2 ._ Impact of successful branch prediction

As a primitive form of branch prediction, the processor designer could assume that a conditional branch is
always taken, and continue processing the instructions which follow at the target address. Let us assume that
this simple strategy works 80% of the time; then the expected cost of a conditional branch is 0.2 x 4 =0.8
clock cycles.

Suppose that not even this primitive form of branch prediction is used Then the pipeline must stall until
the result of every branch condition, and the target address of every indirect jump and procedure return, is
known: only then can the processor proceed with the correct continuation within the program. If we assume
that in this case the pipeline stalls over half the total number of stages, then the number of lost clock cycles
i5 4 for every conditional branch, indirect jump and precedure retumn instruction.

Considering that 15% to 20% of the instructions in a program are branches and jumps, the difference in
cost between (.28 clock cycle and 4 clock cycles per branch instruction is buge, underlining the importance
of branch prediction in a superscalar processor.

Later. in this chapter, we shall study the techniques employed for branch prediction.

Resource Dependences This is possibly the simplest kind of dependence to understand, since it refcrq to
a resource constraint causing dependence amongst instructions needing the resource.

b

Consider a simple pipelined processor with only one floating point multiplier, which is not internally pipelined
and takes three processor clock cycles for each multiplication. Assume that several independent floating point
multiply instructions follow each other in the instruction stream in a single basic block under execution.

Example 12.3 Resource dependence

594 ikt Advanced Computer Architecture

Clearly, while the processor is executing these multiply instructions, it cannot for that duration get even one
instruction completed in every clock cycle. Therefore pipeline stalls are inevitable, caused by the absence of
sufficient floating point multiply capability within the processor, In fact, for the duration of these consecutive
multiply operations, the processor will only complete one instruction in every three clock cycles.

We have assumed the instructions to be independent of each other, and in a single basic block—i.e. there
are no conditional branches within the sequence. Thus there is no data dependence or control dependence
amongst these instructions. What we have here is resource dependence, i.e. all the instructions depend on
the resource which has not been provided to the extent :t is needed for the given workload on the processor.

We can say that there is an imbalance in this processor between the floating point capability provided and
the workload which is placed on it. Such imbalances in system resources usually have adverse performance
impact. Recall that Example 12.1 above and the related discussion illustrated this same point in another
context.

A resource dependence which results in a pipeline stall can arise for access to any processor resource—
functional unit, data path, register bank, and so on'?), We can certainly say that such resource dependences
will arise if hardware resources provided on the processor do not match the needs of the executing program.

Now that we have seen the various types of dependences which can occur between instructions in an
executing program, the problem of detecting and exploiting instruction level parallelism can finally be stated
in the following manner:

Problem Definition Design a superscalar processor to detect and exploit the maximum degree of parallelism
available in the instruction stream—i.e. execute the instructions in the smallest possible number of processor
clock cycles—by handling correctly the data dependences, control dependences and resource dependences
within the instruction stream.

Before we can make progress in that direction, however, it is necessary to keep in mind a prototype
processor design on which the problem solution can be attempted.

(12.4]] MODEL OF ATYPICAL PROCESSOR

We assume a processor with load-store instruction set architecture and a set of programmable
registers as seen by the assembly language programmer or the code generator of a compiler.
Whether these registers are bifurcated into separate sets of integer and floating point registers is not important
for us at present, nor is the exact number of these registers.

To support parallel access to instructions and data at the level of the fastest cache, we assume that L1 cache
is divided into instruction cache and data cache, and that this split L1 cache supports single cycle access for
instructions as well as data. Some processors may have an instruction buffer in place of L1 instruction cache;
for the purposes of this section. however, the difference between them is not important.

The first three pipeline stages on our prototype processor are fetch, decode and issue.

Following these are the various functional units of the processor, which include integer unit(s), floating
point unit(s), load/store unit(s), and other units as may be needed for a specific design—as we shall see when
we discuss specific design techniques.

12l This type of dependence may also be called structural dependence. since it is related to the structure of the processor;
however respurce dependence is the more common term.

Instruction Level Parallelism . .. 595

Let us assume that our superscalar processor is designed for 4 instruction issues in every processor clock
cycle. Clearly then the ferch, decode and issue pipeline stages, as well as the other elements of the processor,
must all be designed to process k instructions in every clock cycle.

On multiple issue pipelines, issue stage is usually separated from decode stage. One reason for thus
increasing a pipeline stage is that it allows the processor to be driven by a faster clock. Decode stage must be
seen as preparation for instruction issue which- —by definition—can occur only if the relevant functional unit
in the processor is in a state in which it can accept one more operation for execution. As a result of the isswe,
the operation is handed over to the functional unit for execution.

Note 12.1

The name of instruction decode stage is somewhat inaccurate, in the sense that the instruction is never
fully decoded. If a 32-bit instruction is fully decoded, for example, the decoder would have some 4 x
10° outputs! This is never done; an immediate constant is never decoded, and memory or I/Q address
is decoded outside the processor, in the address decoder associated with the memory or /0 module.

Register select bits in the instruction are decoded when they are used to access the register bank;
similarly, ALU function bits can be decoded within the ALU. Therefore register select and ALU
function bits also need not be decoded in the instruction decode stage of the processor,

What happens in the instruction decode stage of the processor is that some of the key ficlds of
the instruction are decoded. For example, opcode bits must be decoded to select the functional unit,
and addressing mode bits must be decoded to determine the operations required to calculate effective
memory address,

The process of issuing instructions to functional units also involves instruction scheduling®. For example,
if instruction J; cannot be issued because the required functional unit is not free, then it may still be possible
to issue the next instruction I, —provided that no dependence between the two prohibits issuing instruction
L.

When instruction scheduling is specified by the compiler in the machine code it generates, we refer to it as
static scheduling. In theory, static scheduling should frec up the processor hardware from the complexities of
instruction scheduling; in practice, though, things do not quite turn out that way, as we shall see in the next
section.

If the processor control logic schedules instruction on the Jflv—taking into account inter-instruction
dependences as well as the state of the functional units-—we refer to it as dvnamic scheduling. Much of the
rest of this chapter is devoted to various aspects and techniques of dynamic scheduling. Of course the basic
aim in both types of scheduling—static as well as dynamic—is to maximize the instruction level parallelism
which is exploited in the executing sequence of instructions.

As we have seen, at one time multiple instructions are in various stages of execution within the processor.
But processor state and program state need to be maintained which are consistent with the program order of
completed instructions. This is important from the point of view of preserving the semantics of the program.

Therefore, even with multiple instructions executing in parallel, the processor must arrange the results of
completed instructions so that their sequence reflects program order. One way to achieve this is by using a

1) [nstruction scheduling as discussed here has some similarity with other types of task or job scheduling systems. It
should be noted. of course, that a typical production system requiring job scheduling docs not involve conditional
branches, i.e. control dependences.

594" il Advanced Computer Architecture

reorder buffer, shown in Fig.12.4, which allows instructions to be committed in program order, even if they
execute in a different order: we shall discuss this point in some more detail in Section 12.7.

Functional Functional
unit unit . es
Branch
Predgiction l —
~—= Felch Decode Issue | R;j’frrg?f
|

to cache/
main memory

L

Load/Store Register
unit bank

Fig.12.4 Processor design with reorder buffer

If instructions are executed on the basis of predicted branches, before the actual branch outcome is
available, we say that the processor performs speculative execution. In such cases, the reorder buffer will
need to be cleared—wholly or partly—if the actual branch result indicates that speculation has occurred on
the basis of a mis-prediction.

Functional units in the processor may themselves be internally pipelined; they may also be provided with
reservation stations, which accept operations issved by the issue stage of the instruction pipeline. A functional
unit performs an operation when the requircd operands for it are available in the reservation station. For the
purposes of our discussion, memory load-store wnit(s) may also be treated as functional units, which perform
their functions with respect to the cache/memory subsystem.

Figure 12.5 shows a processor design in which functional units are provided with reservation stations.
Such designs usually also make use of operand forwarding over a common data hus (CDB), with tags to
identify the source of data on the bus. Such a design also implies register renaming, which resolves RAW
and WAW dependences. Dynamic scheduling of instructions on such a processor is discussed in some more
detail in Sections 12.8 and 12.9.

A branch prediction unit has also been shown in Fig. 12.4 and Fig. 12.5 to implement some form of a
branch prediction algorithm, as discussed in Section 12.1 0.

Data paths connecting the various elements within the processor must be provided so that no resource
dependences—and consequent pipeline stalls—are created for want of a data path. If & instructions are to be
completed in every processor clock cycle, the data paths within the processor must support the required data
transfers in each clock cycle.

Instruction Level Parallelisrm —_ 597

Functional ' Functional
unit ! unit
LN B
| Reservation i | Reservation
Branch stations stations
Prediction 1
-—s Fetch Decode issue
to cache/
main memory l j
Load/Store Register
unit bank

Fig.12.5 Processor design with reservation stations on functional units

At one extreme, a primitive arrangement would be to provide a single common bus within the processor;
but such a bus would become a scarce and performance limiting resource amongst multiple instructions
executing in parallel within the processor.

At the other extreme, one can envisage a complete graph of data paths amongst the various processor
elements. In such a system, in each clock cycle, any processor element can transfer data to any other processor
element, with no resource dependences caused on that account. But unfortunatelv, for a processor with #
internal elements, such a system requires # — 1 data ports at every clement, and is therefore not practical.

Therefore, between the two extremes outlined above, processor designers must aim for an optimum
design of internal processor data paths, appropriate for the given instruction set and the targeted processor
performance. This point will be discussed further in Section 2.6, when we discuss a technique known as
operand forwarding.

As mentioned above, the important question of defining program (or thread) state and processor state
must also be addressed. If a context switch, interrupt or exception occurs, the program/thread state and
processor state must be saved, and then restored at a later time when the sime program/thread resumes. From
the programmer’s point of view, the state should correspond to a point in the machine language program at
which the previous instruction has completed execution, but the next one has not siarted.

In a multiple-issue processor, clearly this requires careful thought—since, at any time, as many as a couple
of dozen instructions may be in various stages of execution.

A processor of the type described here is often designed with hardware support tor multi-threading. which
requires maintaining thread status of multiple threads, and switching between threads; this type of design is
discussed further in Section 12.12.

598 ik Advanced Computer Architecture

Note also that, in Fig. 12.4 and Fig. 12.5. we have separated control elements from data flow elements and
functional units in the processor-—and in fact shown only the latter. Design of the control logic needed for the
processor will not be discussed in this chapter in any degree of detail, beyond the brief overview contained
in Note 12.2.

Note 12.2

The processor designer must sclect the architectural components to be included in the processor—-for
cxample a reorder buffer of 2 particular type, a specific method of operand forwarding, a specific
method of branch prediction, and so on. The designer must also specify fully the algorithms which will
govern the working of the selected architectural components. These algorithms are very similar to the
algorithms we write in higher level programming languages, and are written using similar languages.
These algorithms specify the control logic that would be needed for the processor, which would be
finally realized in the form of appropriate digital logic circuits.

Given the complexity of modem systems, the task of translating algorithmic descriptions of
processor functions into digital logic circuits can only be carried out using very sophisticated VL5I
design software. Such sofiware offers a wide range of functionality; simudation software is used to
verify the correctness of the selected alporithm, logical design software translates the algorithm into a
digital circuit; physical design software translates the logical circuit design into a physical circuit which
can be built using VLSI, while design verification software verifies that the physical design does not
violate any constraints of the underlying ctrcuit fabrication technology.

All the architectural elements and control logic which is being described in this chapter can thus be
translated into a physical design and then realized in VLSL. This is how processors and other digital
systems are designed and built today. For our purposes in this chapter, however, it is not necessary to
go into the details of how the required circuits and control logic are to be realized in VLSI,

We take the view that the architect decides whar is 1o be designed, and then the circuit designer
designs and realizes the circuit accordingly. In other words, our subject matter is restricted to the
functions of the architect, and does not extend to circuit design—i.e. to the question of how a particular
function is to be realized in VLSI. We assume that any required control logic which can be clearly
specified can be implemented.

COMPILER-DETECTED INSTRUCTION LEVEL PARALLELISM

In the process of translating a sequential source program into machine language, the compiler
performs extensive syntactic and semantic analysis of the source program. Therefore computer
scientists have considered carefully the question of whether the compiler can uncover the instruction level
parallelism which is implicit in the program. As we shall see, there are several ways in which the compiler
can comntribute to the exploitation of implicit instruction level parallelism.

One relatively simple technique which the compiler can employ is known as loop unrolling, by which
independent instructions from multiple successive iterations of a loop can be made to execute in paraliel.

Instruction Leve! Paratiefism . 599

Unrolling means that the body of the loop is repeated » times for # successive values of the control variable—-
so that one iteration of the transformed loop performs the work of » iterations of the original loop.

Sb)

Consider the following body of a loop in a user program, where all the variables except the loop control
variable i are assumed to be floating point:

Example 12.4 Loop unrolling

fecr i = 0 to 58 do
cl[il = alil*b[i} - p*dli];
Now suppose that machine code is generated by the compiler as though the original program had been

written as;

for j = 0 to 52 step 4 do
{

clil = alil*pl3] - p*d(3];
cli+l] = ali+1]*b{j+1] - p*dl[j+1];
clj+2] = alj+2}*b[j+2] - prdli+2];
cli+3] = alj+31*p[j+3] - p*xd[J+3]);
}
c[56] = al[56]*b[56] - p*d[56];
c[57] = a{57]*b[57) - p*d[57]:
c[58] = a[58]*b([58] - p*d[58];

Note carefully the values of loop variable j in the transformed loop.

The reader may verify, without too much difficulty, that the two program fragments are equivalent, in the
sense that they perform the same computation. Of course the compiler does not transform one source program
into another—it simply produces machine code corresponding to the second version, with the unrolled loop.

In the unrolled program fragment, the loop contains four independent instances of the original loop
body—indeed this is the meaning of Joop wnrolling. Suppose machine code corresponding to the second
program fragment is executing on a processor. Then clearly—if the processor has sufficient floating point
arithmetic resources—instructions from the four loop iterations can be in progress in parallel on the various
functional units.

“It is clear that code length of the machine language program increases as a result of loop unrolling; this
increase may have an effect on the cache hit ratio. Also, more registers are needed to exploit the instruction
level parallelism within the longer unrolled loop. In such cases, techniques such as register renaming—
discussed in Section 12.8—can allow greater exploitation of instruction level parallelism in the unrolled loop.

To discover and exploit the paralielism implicit in loops, as seen in Example 12.4, the compiler must
perform the loop unrolling transformation to generate the machine code. Clearly, this strategy makes sense
only if sufficient hardware resources are provided within the processor for executing instructions in parallel.

600 Suiiins Advanced Computer Architecture

In the simple example above, the loop control variable in the originai program goes from 0 to 58—i.e. its
initial and final values are both known at compile time. [f. on the other hand, the loop control values arc not
known at compile time, the compiler must generate code to calculate at run-time the control values for the
unrolled loop.

Note that toop unrolling by the compiler does not in itsell involve the detection of instruction leve!
paratlelism. But loop unrolling makes it possible for the compiler or the processor hardware to exploit a
greater. degree of instruction level parallelism. In Example 12.4, since the basic block making up the loop
body becomes longer, it becomes possible for the comptiler or processor to find a greater degree of parallelism
amongst the instructions across the unrolled loop iterations.

Can the compiler also do the additional work of actually scheduling machine instructions on the hardware
resources available on the processor” Or must this scheduling be necessarily performed on the fiy by the
processor control logic?

When the compiler schedules machine instractions for execution on the processor, the form of scheduling
is known as sratic schednling. As against this, instruction scheduling carried out by the processor hardware
on the flv is known as dinamic scireduling, which has been introduced in Chapter 6 and will be discussed
further later in this chapter.

1f the compiler is 10 schedule machine instructions, then it must perform the required dependence analysis
amongst instructions. This is certainiy possible, since the compiler has access to full semantic information
obtained from the original source program.

L
& Example 12.5 Dependence across loop iterations

Consider the following loop in a source program, which appears similar to the loop seen in the previous
cxample, but has a crucial new depesndence built into 1t:
for 1 = 0 to 58 do
cli] — ali]l*b[l] - p*clzi-11;
Now the value calculated in the " iteration of the loop makes use of the value ¢ [i- 1] calculated in

the previous iteration. This does not mean that the modified loop cannot be unrolled, but only that extra care
should be taken to account for the dependence.

Dependences amongst references to simple variables, or amongst array elements whose index values are
known at compile time (as in the two examples seen above). can be analyzed relatively easily at compile time.

But when pointers are used to refer to locations in niemory, or when array index values are known only
at run-time, then clearly dependence analysis is not possible at compile time. Therefore processor hardware
must provide suppeort at run-time for afias wnalvsis —i.e. based on the respective effective addresses. to
determine whether two memory acecsses for read or wnte operations refer to the same location.

There 1s another reason why static scheduling by the compiler must be backed up by dynamic scheduling
by the processor hardwarc, Cache misses. 'O interrupis, and hardware exceptions cannot be predicted

Instruction Level Parailefism — 601

at compile time. Therefore, apart from alias analvsis, the disruptions caused by such events in statically
scheduled rumming code must also be handled by the dynamic scheduling hardware in the processor.

These arguments bring out a basic point— compiler detected instruction level parallelism also requires
dynamic scheduling support within the processor. The fact that compiier performs extra work does not really
make the processor hardware much simpler'*.

A turther step in the direction of compiler detected instruction level parallelism and static scheduling can
be the following:

Suppose each machine instruction specifies multiple operations— to be carried out in paralle] within
the processor, on multiple functional units. The machine language program produced by the compiler then
consists of such multi-operation instructions, and their scheduling takes into account all the dependences
amongst instructions. '

Recall that conventional machine instructions specify one operation each —e.g. load, add, multiply, and
s0 on. As opposed to this, multi-operation instructions would require a larger number of bits to encode.
Therefore processors with this type of instruction word are said to have very fong instruction word (VLIW),
A preliminary discussion of this concept has been included in ¢ hapter 4 of the book.

A little further refinement of this concept brings us to the so-called explicitly parallel instruction computer
{EPIC). The EPIC instruction format can be more flexible than the fixed format of multi-operation VLIW
instruction; for example, it may allow the compiler to encode explicitly dependences between operations.

Another possibility is that of having predicated instructions in the instruction set, whereby an instruction
is executed only if the hardware condition (predicate) specified with it holds true. Such instructions would
result in reduced number of conditional branch instructions in the program, and could thereby lower the
number of pipeline flushes.

The aim behind VLIW and EPIC processor architecture is to assign to the compiler primary responsibility
tor the parallel exploitation of plentiful hardware resources of the processor. In theory, this would simplify
the processor hardware, allowing for increased aggregate processor throu ghput. Thus this approach would, in
theory, provide a third alternative to the RISC and CISC slyles of processor architecture.

[n general. however, it is fair to say that VLIW and EPIC concepts have not fulfilled their original promise.
intel ltanium 64-bit processors make up the most well-known processor lamily of'this class. Experience with
that processor showed, as was argued briefly above, that processor hardware does not really become simpler
even when the compiler bears primary responsibility for the detection and exploitation of instruction level
parallelism. Events such as interrupts and cache misses remain unpredictable, and therefore execution of
operations at run-time cannot follow completely the static scheduling specified in VLIW/ EPIC instructions
by the compiler; dynamic scheduling is still needed.

Another practical difficulty with compiler detected instruction level parallelism 1s that the source program
may have to be recompiled for a different processor model of the same processor family. The reason is
simple: such a compiler depends not only on the instruction set architecture {ISA}) of the processor family,
but also on the hardware resources provided on the specific processor model for which it generates code.

I Recall in this context the basic argument for RISC architecture, whereby the instruction set is reduced for the sake of
higher processor throughput. A similar trade-off between hardware and software complexity does not exist when the
compiler performs static scheduling of instructions on a superscalar processor.

602 "S- Advanced Computer Architecture

For highly compute-intensive applications which run on dedicated hardware platforms, this strategy may
well be feasible and it may yield significant performance benefits. Such special-purpose applications are fine-
tuned for a given hardware platform, and then run for long periods on the same dedicated platform.

But commonly used programs such as word processors, web browsers, and spreadsheets must run without
recompilation on all the processors of a family. Most users of software do not have source programs to
recompile, and all the processors of a family are expected to be instruction set compatible with one another.
Therefore the role of compiler-detected instruction leve! parallelism is limited in the case of widely used
general purpose application programs of the type mentioned.

T12.6]] OPERAND FORWARDING

We know that a superscalar processor offers opportunities for the detection and exploitation
of instruction level parallelism—i.e. potential parallelism which is present within a single
instruction stream. Exploitation of such parallelism is enhanced by providing multiple functional units and
by other techniques that we shall study. True data dependences between instructions must of course be
respected, since they reflect program logic. On the other hand, two independent instructions can be executed
in parallel-—or even out of sequence—if that results in better utilization of processor clock cycles.

We now know that pipeline flushes caused by conditional branch, indirect jump, and procedure return
instructions lead to degradation in performance, and therefore attempts must be made to minimize them;
similarly pipeline stalls caused by data dependences and cache misses also have adverse impact on processor
performance.

Therefore the strategy should be to minimize the number of pipeline stalls and flushes encountered while
executing an instruction stream. In other words, we must minimize wasted processor clock cycles within the
pipeline and also, if possible, within the various functional units of the processor.

In this section, we take a look at a basic technique known as operand forwarding, which helps in reducing
the impact of true data dependences in the instruction stream. Consider the following simple sequence of two
instructions in a running program:

ADD R1, RZ, R3
SHIFTR #4, R3, R4
The result of the ADD instruction is stored in destination register ADD R1, R2Z, R3

R3, and then shifted right by four bits in the second instruction,
with the shifted value being placed in R4. Thus, there is a simple
RAW dependence between the two instructions—the output of the RAW (R3)
first is required as input operand of the second.
In terms of our notation, this RAW dependence appears as shown
in Fig. 12.6, in the form of a graph with two nodes and one edge. SHTFTER ¥4, R3, R4
in a pipelined processor, ideally the second instruction should
be executed one stage—and therefore one clock cycle—behind the
first. However, the difficulty here is that it takes one clock cycle
to transfer ALU output to destination register R3, and then another clock cycle to transfer the contents of

Fig. 12.6 RAW dependence between
two instructions

Instruction Leve! Paraflelism . 503

register R3 to ALU input for the right shift. Thus a total of two clock cycles are needed to bring the result
of the first instruction where it is needed for the second instruction. Therefore, as things stand, the second
instruction above cannot be executed just one clock cycle behind the first.

This sequence of data transfers has been illustrated in Fig. 12.7 (2). In clock cycle Ty, ALU output is
transferred to R3 over an internal data path. In the next clock cycle Ty |, the content of R3 is transferred to
ALU input for the right shift. When carried out in this order, clearly the two data transfer operations take two
clock cycles.

But note that the required two transfers of data can be achieved in only one clock cycle if ALU output is
sent to both R3 and ALU input in the same clock cycle—as illustrated in Fig. 12.7 (b). In general, if X is to
be copied to Y, and in the next ¢lock cycle Y is to be copied to Z, then we can just as well copy X to both Y
and Z in one clock cycle.

If this is done in the above sequence of instructions, the second instruction can be just one clock cycle
behind the first, which is a basic requirement of an instruction pipeline.

ALU output Ty R3

ALU input

(@)

ALU output Ty R3

ALU in;_)ul
J

Fig.12.7 Two data transfers (a} in sequence and (b) in parallel

(b)

In technical terms, this type of an operation within a processor is known as operand forwarding. Basically
this means that, instead of performing two or more data transfers from a common source one after the
other, we perform them in parallel. This can be seen as parallelism at the level of elementary data transfer
operations within the processor. To achieve this aim, the processor hardware must be designed to detect and
exploit on the fly all such opportunities for saving clock cycles. We shall see later in this chapter one simple
and elegant technique for achieving this aim.

The benefits of such a technique are easy to see. The wait within a functional unit for its operand becomes
shorter because, as soon as it is available, the operand is sent in one clock cycle, over the common data bus,
to every destination where it is needed. We saw in the above example that thereby the common data bus
remained occupied for one clock cycle rather than two clock cycles. Since this bus itself is a key hardware
resource, its better utilization in this way certainly contributes to better processor performance.

604 il Advanced Computer Architecture

The above reasoning applics even if there is an intervening instruction between ADD and SHIFTR.
Consider the following sequence of instructions:

ADZ Ri, RZ, RZ
sus RE, Re&, RY
SHIFTE ¥4, R3, R4

SHIFTR must be executed after ADD, in view of the RAW dependence. But there is no such dependence
between SUB and any of the other two instructions, which means that SUB can be executed in program order,
or before ADD, or after SHIFTR.

If SUB is executed in program order, then even without operand forwarding between ADD and SHIFTR.
no processor clock cycle is lost, since SHIFTR does not directly follow ADD. But now suppose SUB is
executed either before ADD. or after SHIFTR. In both these cases, SHIFTR directly follows ADD, and
therefore operand forwarding proves useful in saving a processor cycle, as we have seen above.

Figure 12.8 shows the dependence graph of these three
instructions. Since there is only one dependence in this instance
amongst the three instructions, the graph in the figure has three
nodes and only one edge. . RAW (R3) 52 RD, R, =Y

ADD R1, E2, RS

But wiry should SUB be cxccuted in any order other than ®
program order?
The answer can only be this: to achieve better utilization of SHIFTER #4, R3, R4

processor clock cycles. For example, if tor some reason ADD
cannot be executed in a given clock cycle, then the processor may — Fig. 12.8 Dependence graph of three
well decide to execute SUB before 1. instructlons

Therefore the processor must make on e fiv decisions such as

(i) transferring ALU output in parallel to both R3 and ALU input, and/or
(ii) out of order execution of the mstruction SUB.

This implies that the control logic of the processor must detect any such possibilities and generate
the required control signals. This is in fact what is needed to implement dynamic scheduling of macline
instructions within the processor.

Of course, to achieve performance speed-up through dynamic scheduling, considerable complexity must
be added to processor control logic—but that is a price which must be paid for exploiting instruction level
parallelism in the sequence of exccuting instructions; the complexity in achieving superscalar performance
would of course be greater.

Machine instructions of a typical processor can be classified into data transfer instructions, arithmetic
and logic instructions, comparison instructions, transfer of control instructions, and other miscellaneous
instructions.

Of these, only the second group of instructions—i.e. arithmetic and logic instructions—actually alter the
values of their operands. The other groups ol instructions involve only transfers of data within the processor,
between the processor and main memory, or between the processor and an /O adapter.

Instruction Level Paraliefism — 605

Arithmetic and logic instructions are basically functions 10 be computed-—either unary functions of
the form ¥ = f{x}, or binary functions of the form y = f{x;,x;). And these computations are carried out by
functional units such as arithmeric and logic unit (ALU), floatin:: point unit (FPU). and so on. But even to get
any computations done by these functional units, we need (i) transfer of operands o the inputs of functional
units, and (i1} transfer of results back to registers or to the reorder buffer.

EFrom the above arguments, it should be clear that data transfers make up a large proportion of the work of
any processor. The need to fully utilize available hardware resources forces designers to pay close attention
1o the data transfers required not only for a single executing instruction, hut also across multiple instructions.
In this context, operand forwarding can be seen as a potentially powerful technique to reduce the number of
clock cycles spent in carrying out the required data transfers within the processor,

In Fig. 12.4 and Fig. 12.5, we have not shown deails of the data paths connecting the various elements
within the processor. This is intentional, because the nature and number of data paths, their widths, their
access mechanisms, ef cefera. must be designed to be consistent with (1) the various hardware resources
provided within the processor, and (i1} the target performance of the processor. Details of the data paths
cannot be pinned down at an carly stage. when the rest of the design is not yet completed.

We have discussed earlier a basic point related to ary system performance: there should be no performance
bottlenecks in the svstem. Clearly therefore the system of data paths provided within the processor shoutd
also not become a performance limiting element. A multiple issue processor targets k > 1 instruction issues
per processor clock cycle. Hence the demands made on each of the elements of the processor—including
cache memories, functional units, and internal data paths—would be & times greater,

REORDER BUFFER

23]

TR

The reorder buffer as a processor element was introduced and discussed briefly in Section

12.4. Since instructions execute in parallel on multiple functional units, the reorder buffer
serves the function of bringing completed instructions back into an order which is consistent with program
order. Note that instructions may complete in an order which is not reluted to program order, but must be
connmnitted in program order.

At any time, program state and processor state are defined in terms of instructions which have been
committed—i.e. their results are reflected in appropriate registers and/or memory locations, The concepts
of program state and processor state are important in supporting context switches and in providing precise
exceptions,

Entries in the reorder buffer are completed instructions. which are ueued in program order. However,
since instructions do not necessarily complete in program order, we also need a flag with each reorder buffer
entry to indicate whether the instruction in that position has completed.

Figure 12.9 shows a reorder buffer of size eight. Four fields are shown with each entry in the reorder
buffer —instruction identifier, value computed, program-specified destination of the value computed, and a
flag indicating whether the instruction has completed (i.e. the computed value is available).

In Fig. 12.9, the head of queue of instructions is shown at the top, arbitrarily labeled as instr{i]. This is the
instruction which would be committed next—if it has completed execution. When this instruction commits,

606 kil Advanced Computer Architecture

its result value is copied to its destination, and the instruction is then removed from the reorder buffer. The
next instruction to be issued in the issue stage of the instruction pipeline then joins the reorder buffer at its
tail.

Head of queue instruction will
commit if its value is available

instrfi] valueli] dest(i} readyli}

instrli+1] value[i+1] | dest[i+1] ready[i+1]
instr{i+2] value[i+2] | dest[i+2] ready[i+2)
instr{i+3] value[i+3] | dest[i+3] ready{i+3]
instr{i+4] valug[i+4] | dest[i+4] ready[i+4]
instr{i+5] valve(i+5] | dest[i+5] readyfi+5]
instr[i+6] value[i+6] | dest[i+6) ready[i+6]
instr{i+7] value[i+7] | destfi+7] ready[i+7]

Fig.12.9 Entries in a reorder buffer of size eight

If the instruction at the head of the queue has not completed, and the reorder buffer is full, then further
issue of instructions is held up—i.e. the pipeline stalls—because there is no free space in the reorder buffer
for one more entry.

The result value of any other instruction lower down in the reorder buffer, say value[i+k], can also be used
as an input operand for a subsequent operation-—provided of course that the instruction has completed and
therefore its result value is available, as indicated by the corresponding flag ready[i +k]. In this sense, we see
that the technique of operand forwarding can be combined with the concept of the reorder buffer.

It should be noted here that operands at the input latches of functional units, as well as values stored in
the reorder buffer on behalf of completed but uncommitted instructions, are simply ‘work in progress’. These
values are not reflected in the state of the program or the processor, as needed for a context switch or for
exception handling.

We now take a brief look at how the use of reorder buffer addresses the various types of dependences in
the program.

(i) Data Dependences A RAW dependence—i.e. true data dependence—will hold up the execution of the
dependent instruction if the result value required as its input operand is not available. As suggested above,
operand forwarding can be added to this scheme to speed up the supply of the needed input operand as soon
as its value has been computed.

WAR and WAW dependences—t.e. anti-dependence and output dependence, respectively—also hold up
the execution of the dependent instruction and create a possible pipeline stall. We shall see below that the
technique of register renaming is needed to avoid the adverse impact of these two types of dependences.

(if) Control Dependences Suppoese the instruction(s) in the reorder buffer belong to a branch in the
program which should not have been taken---i.e. there has been a mis-predicted branch. Clearly then the

tnstruction Level Parafielism —— 607

reorder buffer should be flushed along with other elements of the pipeline. Therefore the performance impact
of control dependences in the running program is determined by the accuracy of branch prediction technique
employed. The reorder buffer plays no direct role in the handling of control dependences.

(iii) Resource Dependences If an instruction needs a functional unit to execute, but the unit is not free,
then the instruction must wait for the unit to become free—clearly no technique in the world can change that,
In such cases, the processor designer can aim to achieve at least this: if a subsequent instruction needs to use
another functional unit which is free, then the subsequent instruction can be executed out of order.

However, the reorder buffer queues and commits instructions ifi program order. In this sense, therefore,
the technique of using a reorder buffer does not address explicitly the resource dependences existing within
the instruction stream; with multiple functional units, rhe processor can still achieve out of order completion
of instructions.

In essence, the conceptually simple technique of reorder buffer ensures that if instructions as programmed
can be carried out in parallel—i.e. if there are no dependences amongst them—then they are carried out
in parallel. But nothing clever is attempted in this technique to resolve dependences. Instruction issue and
commit are in program order; program slate and processor state are correctly preserved.

We shall now discuss a clever technique which alleviates the adverse performance effect of WAR and
WAW dependences amongst instructions.

{12.8}| REGISTER RENAMING |

Traditional compilers allocate registers to program variables in such a way as to reduce the
main memory accesses required in the running program. In programming language C, in fact,
the programmer can even pass a hint to the compiler that a variable be maintained in a processor register.

Traditional compilers and assembly language programmers work with a fairly small number of
programmable registers. The number of programmable registers provided on a processor is determined by
either

(1) the need to maintain backward instruction compatibility with other members of the processor family,
or

(i) the need to achieve reasonably compact instruction encoding in binary. With sixteen programmable
registers, for example, four bits are needed for each register specified in a machine instruction.

Amongst the instructions in various stages of execution within the processor, there would be occurrences
of RAW, WAR and WAW dependences on programmable registers. As we have seen, RAW is true data
dependence—since a value written by one instruction is used as an input operand by another. But a WAR
or WAW dependence can be avoided if we have more registers to work with. We can simply remove such a
dependence by getting the two instructions in question to use two ditferent registers.

But we must also assume that the instruction set architecture (ISA) of the processor is fixed—i.e. we
cannot change it to allow access to a larger number of programmable registers. Rather, our aim here is to
explore techniques to detect and exploit instruction level parallelisin using a given instruction set architecture.

605 Wil Advanced Computer Architecture

Therefore the only way to make a larger number o7 registers available to instructions under execution
within the processor is to make the additional registers invivible to machine language instructions. Instructions
under execution would use these additional registers, even if instructions making up the machine language
program stored in memory cannot refer to them.

Let us suppose that we have several such additional registers available, to which machine instructions
of the running program cannot make any direct reference. Of course these machine instructions do refer to
programmable registers in the processor—and thereby create the WAR and WAW dependences which we are
now frying to remove.

For example, let us say that the instruction:

FADD El, RZ, RS

is followed by the instruction:

FSUR F3, R4, RS
Both these instructions are writing to register RS, creating thercby a FADD R1, R2, Rb
WAW dependence—i.e. output dependence— on register RS. Clearly,
any subsequent instruction should read the value written into RS by WAW (R5)
FSUB. and naot the value written by FADD. Figure 12.10 shows this
dependence in graphical notation. SUB R3, B4, RY
With additional registers available for use as thesz instructions Fig.12.10 WAW dependence

execute, we have a simple technique to remove this output dependence.

Let FSUB write its output value to a register other than R5, and let us call that other register X. Then
the instructions which usc the value generated by FSUB will refer to X, while the instructions which use
the value generated by FADD will continue 1o refer to R5. Now, since FADD and FSUB are writing to two
different registers, the output dependence or WAW between them has been removed!!

When FSUB commits, then the value in R 5 should be updated by the value in X—i.e. the value computed
by FSUB. Then the physical register X, which is not a program visible register, can be freed up for use in
another such situation.

Note that here we have mapped- - or renamed—RS to X, for the purpose of storing the result of FSUB, and
thereby removed the WAW dependeace from the instruction stream. A pipeline stall will now not be created
due to the WAW dependence.

In general, let us assume that instruction I, writes a value into register Ry At the time of instruction 1ssuc,
we map this programmable register Ry onto a program invisible register Xp, so that when instruction |
executes, the result is written into X, rather than Ry. In this program invisible register Xy, the result value is
available to any other instruction which is truly data dependent on Ij— i.c. which has RAW dependence on |,

[f any instruction other than I, is also writing into Ry, then that instance of Ry will be mapped into some other
program invisible register X,. This renaming resolves the WAW dependence between the two instructions
involving R,. When instruction I; commits, the value mn X, is copied back into Ry, and the program invisible
register X, is freed up for reuse by another instruction.

) Iy fact the processor may also rename RS in FADD to another program invisible register, say Y. But clearly the
argument made here still remains valid.

Instruction Level Parallelism — 609

A similar argument applies if I is reading the value in Ry, and a subsequent instruction is writing into
Ry—i.e. there is a WAR dependence between them.

The technique outlined, which can resolve WAR and WAW dependences, is known as register renaming.
Both these dependences are caused by a subsequent instruction writing into a register being used by a
previous instruction. Such dependences do not reflect program logic, but rather the use of a limited number
of registers.

Let us now consider a simple example of WAR dependence, i.e. of anti-dependence. The case of WAW
dependence would be very similar.

ob)

Assume that the instructions:

Example 12.6 Register renaming and WAR dependence

FADD R6, R7, R2
FADD R2, R3, E5

are followed later in the program by the instruction:
FSUB R1, R3, R2

The first FADD instruction is writing a value into R2, which the second FADD instruction is using, i.e.
there is true data dependence between these two instructions. Let us assume that, when the first FADD
instruction executes, R2 is mapped into program invisible register X,,,.

The latter FSUB instruction is writing another value into R2.
Clearly, the second FADD (and other intervening instructions

FADD R6, R7, RZ

before FSUB) should see the value in R2 which is written by the RAW (R2)
first FADD—and not the value written by FSUB. Figure 12.11
shows these two dependences in graphical notation. FADD R2, R3, R5

With register renaming, it is a simple matter to resolve the
WAR anti-dependence between the second FADD and FSUB.

As mentioned, let X, be the program invisible register to
which R2 has been mapped when the first FADD executes. This
is then the remapped register to which the second FADD refers Fig. 12.11 RAW and WAR dependences
for its first data operand.

Let FSUB write its output to a program invisible register other than X, which we denote by X,,. Instructions
which use the value written by FSUB refer to X,,. while instructions which use the value written by the first
FADD refer to X,

The WAR dependence between the second FADD and FSUB is removed; but the RAW dependence
between the two FADD instructions is respected via X,

When the first FADD commits, the value in X, is transferred to R2 and program invisible register Xm
is freed up; likewise, later when FSUB commits. the value in X, is transferred to R2 and program invisible
register X, is freed up.

WAR (R2)

F3UB R1, R3, R2

610" Wik Advanced Computer Architecture

Thus we see that register renaming removes WAR and WAW dependences from the instruction stream by
re-mapping programmable registers to a larger pool of program invisible registers. For this, the processor
must have extra registers to handle instructions under ¢xccution, but these registers do not appear in the
instruction set.

Consider true data dependence, i.c. RAW dependence, betwceen two instructions. Under register renaming,
the write operation and the subsequent read operation both cccur on the same program invisible register. Thus
RAW dependence remains intact in the instruction stream—as it should, since it is true data dependence. As
seen above, its impact on the pipeline operation can be reduced by operand forwarding.

Dependences are also caused by reads and writes to memory locations. In general, however, whether
two instructions refer to the same memory location can only be known after the two effective addresses are
calculated during execution. For exarnple, the two memory references 2000{R1] and 4000{R3] occurring in
a running program may or may not refer to the same memory location—this cannot be resolved at compile
time.

Resolution of whether two memory references point to the same memory location is known as alias
analysis, which must be carried out on the basis of the two effective memory addresses. If a load and a store
operation to memory refer to two different addresses, their order may be interchanged. Such capability can be
built into the load-store unit—which in essence operates as another functional unit of the processor.

An elegant implementation of register renaming and operand forwarding in & high performance processor
was seen as early as in 1967—even before the term register renaming was coined. This technique—which
has since become well-known as Tomasulo ¥ algorithm—-is described in the next section.

(12.9 | TOMASULO'SALGORITHM -

In the IBM 360 family of computer systems of 1960s and 1970s, model 360/91 was developed
as a high performance system for scientific and engineering applications, which involve
intensive floating point computations. The processor in this system was designed with multiple floating point
units, and it made use of an innovative algorithm for the efficient use of these units. The algorithm was based
on operand forwarding over a common data bus, with tags to identify sources of data values sent over the bus.

The algorithm has since become known as Tomasulo s algorithm, after the name of its chief designer[(’l;
what we now understand as register renaming was also an implicit part of the original algorithm.

Recall that, for register renaming, we need a set of program invisible registers to which programmable
registers are re-mapped. Tomasulo’s algorithm requires these program invisible registers to be provided with
reservation stations of functional units.

Let us assume that the functional units are internally pipelined, and can complete one operation in every
clock cycle. Therefore each functional unit can initiatc one operation in every clock cycle—provided of
course that a reservation station of the unit is ready with the required input operand value or values. Note that
the exact depth of this functional unit pipeline does not concern us for the present.

1 See An efficient algorithm for explowting multiple arithmetic unis, by R. M. Tomasulo, IBM Journal of Research &
Development 11:1, January 1967. A preliminary discussion on Tomasulo’s algorithm was included in Chapter 6.

Instruction Leve! Parallefism V. 811

Figure 12,12 shows such a functional unit connected to the common data bus, with three reservation
stattons provided on i,

functional unit

op opnd-1 t1 opnd-2 t2

reservation
stations

to/from common data
bus (CDB)

Fig. 12.12 Reservation stations provided with a functional unit

The various fields making up a typical reservation station are as follows:

op operation to be carried out by the functional unit
opnd-1 &

epnd-2 two operand values needed for the operation

t & 12 two source tags associated with the operands

When the needed operand value or values are available in a reservarion station, the functional unit can
initiate the required operation in the next clock cycle.

At the time of instruction issue, the reservation station is filled out with the operation code (op). If an
operand value is available, for example in a programmable register, it is transferred to the corresponding
source operand field in the reservation station.

However, if the operand value is not available at the time of issue, the corresponding source tag (+/ and/or
12) is copied into the reservation station. The source tag identifies the source of the required operand. As soon
as the required operand value is available at its source—which would be typically the output of a functional
unit—the data value is forwarded over the common data bus, along with the source tag. This value is copied
into all the reservation station operand slots which have the matching tap.

Thus operand forwarding is achieved here with the use of tags. Ail the destinations which require a data
value receive it in the same clock cycle over the commuon data bus, by matching their stored operand tags with
the source tag sent out over the bus.

L
& : Example 12.7 Tomasulo's algorithm and RAW dependence

Assume that instruction I1 is to write its result into R4, and that two subsequent instructions 2 and 13 are
to read—i.e. make use of-—that result value. Thus instructions 12 and (3 are truly data dependent (RAW
dependent) on instruction [1. See Fig. 12.13.

612 i Advanced Computer Architecture

Assume that the value in R4 is not available when 12 and
I3 are issued; the reason could be, for example, that one of the
operands needed for [1 is itself not available. Thus we assume RAW(R4) RAW(R4)
that I1 has not even started executing when 12 and I3 are issued.
When [2 and I3 are issued, they are parked in the reservation
stations of the appropriate functional units. Since the rcquired
result value from I1 is not available, these reservation station Fig.12.13 Example of RAW dependences
entries of 12 and I3 get source tag corresponding to the output
of 11—i.e. output of the functional unit which is performing the operation of Il

11

12 13

When the result of 11 becomes available at its functional unit, it is sent over the common data bus along
with the tag value of its source——i.e. output of functional unit.

At this point, programmable register R4 as well as the reservation stations assigned to 12 and I3 havc the
matching source tag—since they are waiting for the same result value, which is being computed by 1].

When the tag sent over the common data bus matches the tag in any destination, the data value on the bus
is copied from the bus into the destination. The copy occurs at the same time into all the destinations which
require that data value. Thus R4 as well as the two rescrvation stations holding 12 and I3 receive the required
data value, which has been computed by 11, at the same time over the common data bus.

Thus, through the use of source tags and the common data bus, in one clock cycle, three destination
registers receive the value produced by 11 —programmable register R4, and the operand registers in the
reservation stations assigned to 12 and 13

Let us assume that. at this point, the second operands of 12 and 13 are already available within their
corresponding reservation stations. Then the operations corresponding to 2 and I3 can begin in parallcet
as soon as the result of 11 becomes available—since we have assumed here that 12 and 13 execute on two
separate functional units.

It may be noted from Example 12.7 that. in effect, programmable registers become renamed to operand
registers within reservation stations, which are program nvisible. As we have seen in the previous section.
such renaming also resolves anti-dependences and output dependences, since the target register of the
dependent instruction is renamed in these cases to a different program invisible register.

I/)
& Example 12.8 Combination of RAW and WAR dependence

Let us now consider a combination of RAW and WAR dcpendences.

Assume that instruction [1 is to write its result into R4, a subsequent instructions 12 is to read that result
value, and a latter subsequent instruction I3 is then to write its result into R4, Thus instruction 12 is truly
data dependent (RAW dependent) on instruction 11, but I3 is anti-dependent (WAR dependent) on 12. See
Fig, 12.14.

Instruction Leve! Parafielism _—- 613

RAW(R4)

!|2

RAW(R4)

!IB

Fig.12.14 Example of RAW & WAR dependences

As in the previous example, and keeping in mind similar possibilities, let us assume once again that the
output of [1 is not available when 12 and 13 are 1ssucd. thus R4 has the source tag value corresponding to the
output of I1.

When 12 is issued, it is parked in the reservation station of the appropriate functional unit. Since the
required result value from 11 is not available, the reservation station entry of 12 also gets the source tag
corresponding to the output of 11—i.e. the same source tag value which has been assigned to register R4,
since they are both awaiting the same result.

The question now is: Can I3 be issued even before 11 completes and 12 starts execution”?

The answer is that, with register renaming —carried out here using source tags—I3 can be issued even
before 12 starts execution.

Recall that instruction 12 is RAW dependent on [, and therefore it has the correct source tag for the output
of 11. 12 will reccive its required input operand as soon as that is available, when that value would also be
copied into R4 over the common data bus. This is exactly what we observed in the previous example.

But suppose 13 is issued even before the output of Tt is available. Now R4 should receive the output of
I3 rather than the output of I1. This is simply becausc, in register R4, the output of 11 is programmed to be
overwritten by the output of 13.

Thus, when [3 is issued, R4 will receive the sourcs tag value corresponding to the output of [3—i.e. the
functional unit which performs the operation of 13. Its previous source tag value corresponding to the output
0i 11 will be overwritten.

When the output of 11 (finally) becomes available. it goes to the input of 12, but not to register R4, since
this register’s source tag now refers to 13. When the output of [3 becomes available, it goes correctly to R4
because of the matching source tag.

For simplicity of discussion, we have not tracked here the outputs of 12 and I3. But the student can
verify easily that the two data transfers described above are consistent with the specified sequence of three
instructions and the specified dependences.

b
8\ : Example 12.9 Scheduling across multiple iterations

Consider now the original iterative program loop discussed in Example 12.4.

&1 4" T Advanced Computer Architecture

let us assumne that, without any unrolling by the compiler, this loop executes on a processor which provides
branch prediction and implements Tomasulo’s algorithm. if instructions from successive loop iterations are
available in the processor at one time—because of successful branch prediction(s}—and if floating peint
units are available. then instructions from successive iterations can execute at one time, in parallel.

But if instructions from multiple iterations are thus executing in parallel within the processor—at one
time—then the net effect of these hardware techniques in the processor is the same as that of an unrolled loop.
In other words, the processor hardware achicves on the fly what otherwise would require unrolling assistance
from the compiler!

Even the dependence shown in Example 12.5 across successive loop iterations is handled in a natural
way by branch prediction and Tomasulo’s algorithm. Basically this dependence across loop iterations
becomes RAW dependence between instructions, and is handled in a natural way by source tags and operand
forwarding.

This example brings our clearly how a particular method of exploiting parallelism—/oop unrolling, in this
case—can be implemented either by the compiler or, equivalently, by clever hardware techniques employed
within the processor.

Example 12.9 illustrates the combined power of sophisticated hardware techniques for dynamic scheduling
and branch prediction. With such zfficient techniques becoming possible in hardware, the importance of
compiler-detected parallelism (Section 12.5) diminishes somewhat in comparison.

L)
& Example 12.10 Calculation of processor clock cycles

Let us consider the number of ¢lock cycles it takes to execute the following sequence of machine instructions.
We shall count clock cycles starting from the last clock cycle of instruction 1, so that the answer is independent
of the depth of instruction pipeline.

1 LOAD mem-a, R4
2 FSUB R7, R4, R4
3 STORE mem-a, R4
4 FADD R4, R3, RY
5 STORE mem-b, R7

We shall assume that {a) one instruction is issued per clock cycle, (b) floating point operations take two
clock cycles each to execute, and (¢) memory operations take one clock cycle each when there is L1 cache hit.

If we add the number of clock cycles needed for each instruction, we get the total as [+2+1+2+1 = 7.
However, if no operand forwarding is provided, the RAW dependences on registers R4 and R7 will cost three
additional clock cycles (recall Fig. 12.7), for a total of 10 clock cycles for the given sequence of instructions.

With operand forwarding—which is built into Tomasulo’s algorithm—one clock cycle is saved on account
of each RAW dependence—i.e. between (i) instructions 1 and 2, (ii) instructions 2 and 3, and (ii} instructions
4 and 5.

Thus the total number of clock cycles required, counting from the last clock cycle of instruction 1, is 7.
With the assumptions as made herv, there is no further scope to schedule these instructions in parailel.

Instruction Level Parallelism . 615

In Tomasulo’s algorithm, use of the common data bus and operand forwarding based on source tags results
in decentralized control of the multiple instructions in execution. In the 1960s and 1970s, Control Data
Corporation developed supercomputers CDC 6600 and CDC 7600 with a centralized technique to exploit
instruction level parallelism.

In these supercomputers, the processor had a centralized scoreboard which maintained the status of
functional units and executing instructions (see Chapter 6). Based on this status, processor control logic
governed the issue and execution of instructions. One part of the scoreboard maintained the status of every
instruction under execution, while another part maintained the status of every functional unit. The scoreboard
itself was updated at every clock cycle of the processor, as execution progressed.

(gt St T sk Mg

24 ‘g — B
112.10]] BRANCH PREDICTION

The importance of branch prediction for multiple issue processor performance has already
been discussed in Section 12.3. About 15% to 20% of instructions in a typical program are
branch and jump instructions, including procedure returns. Therefore—ii hardware resources are to be fully
utilized in a superscalar processor—the processor must start working on instructions beyond a branch,
even before the branch instruction itself has completed. This is only possible through some form of branch
prediction.

What can be the logical basis for branch prediction? To understand this, we consider first the reasoning
which is invelved if one wishes to predict the result o7 a tossed coin.

Note 12.3 Predicting the outcome of a tossed coin

Can one predict the result of a single coin toss?

If we have prior knowledge—gained somehow- -that the coin is unbiased, then the answer is a clear
NO, in the sense that both possible outcomes head and tail are equally probable. The only possible
prediction one can make in this case is that the coin will come up either head or rail—i.e. a prediction
which is of no practical value!

But how can we come to have prior knowledge that a coin is unbiased? Logically, the only knowledge
we can have about a coin is obtained through observations of outcomes in successive tosses. Therefore,
the more realistic situation we must address is that we have no prior knowledge about the coin being
either unbiased or biased. Having received a coin, any inference we make about it—i.e. whether it is
biased or not—can only be on the basis of observations of outcomes of successive tosses of the coin.

In such a situation of no prior knowledge, assume that a coin comes up sead in its first two tosses.
Then simple conditional probability theory predicts that the third toss of the coin has a higher probability
of coming up kead than of coming up rail.

This is a straightforward exampie of Bayesian reasoning using conditional probabilities, named
after Rev. Thomas Bayes [1702-1761]. French Mathematician Laplace [1749- 1827] later addressed
this and related questions and derived a formula to calculate the respective conditional probabilities!”).

M For a detailed discussion, with applications, the reader may refer to the book Artificial Intelligence: A Modern Ap-
proach, by Russell and Norvig, Pearson Education.

61 5“ Advanced Computer Architecture

Like tossed coins. outcomes of conditional branches in computer programs also have yes and no
answers— i.e. a branch is cither taken or not taken. But outcomes of conditional branches are in
fact biased—because there is strong correlation between (a) successive branches taken ai the same
conditional branch instruction in a program, and (b) branches taken at two different conditional branch
instructions in the same program.

This is how programs behave. i.e. such correlation is an essential property of real-life programs. And
such correlation provides the logical basis for branch prediction. The issue for processor designers is
how to discover and utilize this correlation on the fl- —without incurring prohibitive overhead in the
process.

A basic branch prediction technique uses a so-called rwo-bit predictor. A two-bit counter is maintained for
every conditional branch instruction in the program. The two-bit counter has four possible states; these four
states and the possible transitions between these states are shown in F ig. 12.15.

In states ¢ & 1: Branch taken Solid line: Correct predication.
In states 2 & 3 Branch no taken Broken line: incorrect prediction

Fig.12.15 State transition diagram of 2-bit branch predictor[aj

When the counter state is 0 or |, the respective branch is predicted as taken: when the counter state is 2
or 3, the branch is predicted as no? taken. When the conditional branch instruction is executed and the actual
branch outcome is known, the state of the respective swo-bit counter is changed as shown in the figure using
solid and broken line arrows.

When two successive predictions come out wrong. the prediction is changed from branch taken to branch
not taken, and vice versa. In Fig. 12.14, state transitions made on mis-predictions are shown using broken line
arrows, while solid line arrows show state transitions made on predictions which come out right.

18 Note that Fig. 12.14 is a slightly redrawn version of the state transition diagram shown earlier in Fig. 6.19 (b).

Instruction Leve! Parollelism . 68T

This scheme uses a two-bit counter for every conditional branch, and there are many conditional branches
i the program. Overall. therefore. this branch prediction logic needs a few kilobyles or more of fast MEMory.
One possible organization for this branch prediction memory is in the form of an array which is indexed
by low order bits of the instruction address. If twelve low order bits are used to define the array index, for
example, then the number of entries in the array is 4096/

To be effective, branch prediction should be carriec out as early as possible in the instruction pipeline.
As soon as a conditional branch instruction is decoded. branch prediction logic sheuld predict whether the
branch 1s taken. Accordingly, the next instruction address should be taken either as the branch target address
(i.e. branch is taken), or the sequentially next address in the program {i.e. branch is not taken).

Can branch prediction be carried out even before the instruction is decoded—i.e. at the instruction fetch
stage? Yes. if a so-called branch target buffer is provided which has a history of recently executed conditional
branches. The branch target butfer is organized as an associative memory accessed by the instruction address;
this memory provides quick access to the prediction and the target instruction address needed.

In some programs, whether a conditional branch is taken or not taken correlates better with other conditional
branches in the program—rather than with the earlier history of outcomes of the same conditional branch.
Accordingly, correlated predictors can be designed. which generate a branch prediction based on whether
other conditional branches in the program were taken or not taken.

Branch prediction based on the earlier history of the same branch is known as local prediction, while
prediction based on the history of other branches in the program is known as global prediction. A tournament
predictor uses (i) a global predictor, (i) a local prediclor, and (iii) a selecfor which selects one of the two
predictors for prediction at a given branch instruction. The selector uses a two-bit counter per conditional
branch-—as in Fig.12.14—to0 choose between the global and local predictors for the branch. Two successive
mis-predictions cause a switch from the local predictor to the global predictor, and vice versa; the aim is to
infer which predictor works better for the particular braach.

The common element in all these cases is that branch prediction relies on the correlation detected between
branches taken or not taken in the running program --and for this. an efficient hardware implementation of
the required prediction logic is required.

Considerations outlined here apply also to jump prediction, which is applicable in indirect jumps. computed
go to statements (used in FORTRAN), and switch statements (used in C and C++). Procedure returns can
also benefit from a form of jump prediction. The reason is that the address associated with a procedure return
is obtained from the runtime procedure stack in main memory: therefore a correct prediction of the return
address can save memory access and a few processor clock cycles.

[t is also possible to design the branch prediction legic to utilize information gleaned from a prior execution
profile ot execution trace of the program. If the same program is going 0 run on dedicated hardware for
years - -say for an application such as weather forecasting—-then such special effort put into speeding up the
program on that dedicated hardware can pay very good dividend over the life of the application. Suppose
the execution trace informs us that a particutar branch is taken 93% of the time, for example. Then it is a
good idea to “predict’ the particular branch as always taken—in this case. we are assured that 95% of the
predictions made will be correct!

1 Clearly, if two conditional branch instructions happen to have the same low order bits, then their predictions will be-
come ‘intermingled’. But the probability of two ore more such instructions being in execution at the same time would
be quite low,

&8 i Advanced Computer Architecture

As we discussed in Section 123, under any branch prediction scheme, a mis-predicted branch means that
subsequent instructions must be flushed from the pipeline. It should of course be noted here that the actual
result of a conditional branch instriuction-— as against its predicted result—is only known when the nstriction
completes execution.

Speculative Execution Instruciions executed on the basis of a predicted branch, before the actual branch
result is known, are said to involve speculative evecution,

If a branch prediction turns ou1 to be correct, the corresponding speculatively executed instructions must
be committed. If the prediction turns out 1o be wroag, the effects of correspending speculative operations
carried out within the processor must be cleaned up, and instructions from another branch of the program
must instead be executed.

As we have seen in Example 12.2, the strategy results in net performance gain if branch predictions are
made with sufficiently high accuracy. The performunce benefit of branch prediction can only be gained if
prediction is followed by speculative execution.

A conventional processor fetches one instruction after another—i.e. it does not look ahcad into the
forthcoming instruction stream more than one instruction at a time. To support a deeper and wider— i.e.
multiple issue—instruction pipeline, it is necessary for branch prediction and dynamic scheduling logic to
look further out into the forthconung instruction stream. In other words, more of the likely future instructions
need 1o be examined in support of multiple issue scheduling and branch prediction.

Instruction windew-—or simply window-—is the special memory provided upstream of the fetch unit in the
processor to thus look ahead mto the forthcoming instruction stream. For the targeted processor performance,
the processor designers must integrate and balance the hardware techniques of branch prediction, dynamic
scheduling, speculative executicn, internal data paths, functional units, and an instruction window of
appropriate size.

LIMITATIONS IN EXPLOITING INSTRUCTION
LEVEL PARALLELISM

There is no such thing us free lunch!--an American proverb.

Technology is about trade-off+- -and therefore it will come as no surprise to the student to learn that there
are practical limits on the amount of instruction leve parallelism which can be exploited in a single executing
instruction stream. In this section we shall try to identify in broad terms some of the main limiting factors! ™.

Consider as an example a multiple issue processor which targets four instruction issues per clock cycle,
and has cight stages in the instruction pipeline. Clearly. in this processor at one time as many as thirty two
instructions may be in differcnt stages of tetch, decode, issue, execute, write result, commit, and so on- -and
each stage in the processor must handle four instructions n every clock cycle.

Assuming that 15% of the executing instructions are branches and jumps, the processor would handle
at one time four to five such instructions i.e. multiple predicted branches would be executing at one time.

[10] Phe interested studen! may read Limits of [nstruction-level Farullelism, by D.W. Wall, Research Report 93/6, Western
Research Laboratory. Digital Equipment Corporation, November 1993. Note 12.4 below is a brief summary of this
technical report.

Instruction Level Parallelistr ——.. 619

Similarly, multiple loads and stores would be in progress at one time. Also, dynamic scheduling would
require a fairly large instruction window, 1o maintain the 1ssue rate at the targeted four instructions per clock
cycle.

Consider the instruction window. Instructions in the window must be checked for dependences. to support
out of order issue. This requires associative memory and its control logic. which means an overhead in
chip area and power consumption; such overhead would increase with window size. Similarly, any form
of checking amongst executing instructions—-e.g. checking addresses of main memory references, for alias
analysis—would involve overhead which increases with issue multiplicity &. In turmn, such increased overhead
in aggressive pursuit of instruction level parallelism would adversely impact processor clock speed which is
achicvable, for a given VLSI technology.

Also. with greater issue multiplicity 4, there would be higher probability of less than & instructions being
issued in some clock cycles. The reason for this can be simply that a functional unit is not available, or
that true RAW dcpendences amongst instructions hold up instruction issue. This would result in missing
the target performance of the processor in actual applications, in terms of issue multiplicity k. Let us say
processor A has k = 6 but it is only 60% utilized on average in actual applications; processor B, with the same
instruction set but with k = 4, might have faster clock rate and also higher average utilization, thus giving
better performance than A on actual applications.

The increased overhead also necessitates a larger number of stages in the instruction pipeline, so as to limit
the total delay per stage and thereby achieve faster clock cycle; but a lenger pipeline results in higher cost of
flushing the pipeline. Thus the aggregate performance impact of increased overhead finally places limits on
what is achievable in practice with aggressively superscalar, VLIW and EPIC architecture !

Basically, the increased overhead required within the processor implics that:

(i) To support higher multiplicity of instruction issue. the amount of centrot logic required in the processor
increases disproportionately, and
(i1) For higher throughput, the processor must also operate at a high clock rate.

But these two design goals are often at odds, for technical reasons of circuit design, and also because there
are practical limits on the amount of power the chip can dissipatc,

Power consumption of a chip is roughly proportional to ¥ x f; where A is the number of devices on the chip,
and f1s the clock rate. The number of devices on the ckip is largely determined by the fabrication technology
being used. and power consumption must be held within the limits of the heat dissipation possible.

Therefore the question for processor designers is: For a targeted processor performance, how best o
select and utilize the various chip resources available, within the hroad design constraints of the given circuit
technology?

The student may recall that this was the introductory theme of this chapter (Section 12.1). and should note
that such design trade-offs are shaping processor design today. To achieve their goals, processor designers
make use of extensive software simulations of the prozessor. using various benchmark programs within the
target range of applications. The designers’ own experiznce and insights supplement the simulation results in
the process of generating solutions to the actual problems of processor design.

' [n this connection, see also the discussion in the latter part of Section (2.5,

620 " s Advanced Computer Architecture

Emergence of hardware support for multi-threading and of multi-core chips. which we shall discuss in
the next section. is due in part to the practical limits which have been encountered in exploiting the implicit
parallelism within a single instruction stream.

Note 12.4 Wall’s Study on Instruction Leve! Parallelism

In this section, we have discussed the primary factor limiting the amount of instruction level parallelism
which can be exploited in a sequence of executing instructions.

The report by D. W. Wall cited above was the result of a landmark empirical investigation into the
amount of instruction level parallelism present in real-life programs. Any detailed discussion on the
subject would benefit from a study of this report, and accordingly this note presents a brief summary
of the repott.

With reference to the overall design space which is available to the processor designer, Wall's report
says:

Moreover. this space is multi-dimensional. because parallelism analysis consists of an ever-growing
hody of complementary fechnigies. The pavoff of one choice depends strongly on iis context in the
other choices made. The purpose of this study is to explore thar multi-dimensional space, and provide
some insight about the importance of different techniques in different contexts.

The report was bascd on analysis of the instruction level parallelism present in 18 real-life programs;
the number of combinations of processor features tried out during the analysis—i.e. *points’ in the
processor design space-—~was more than 350,

Of the eighteen programs analyzed, twelve werc from the standard SPEC92 benchmark suite. three
were common utility programs, and three were engineering applications. The programs were compiled
into machine language for the MIPS R3000 processor. Table 12.1 presents some information about
these programs,

The technique employed in analyzing instruction level parallelism in these programs is known as
oracle-driven trace-based simuiation. For this, a complete trace of the program instructions executed
is obtained from a previous rure. the trace includes data addresses, results of branches and jumps. and
so on. A scheduling algorithm is then used to pack thesc instructions, as tightly as possible, into a
sequence of processor cycles. '

As mentioned above, the simulation of processor performance was carried out at more than 350
different points in the space of possible processor configurations. These points differed from each
other in the type of parallelism detection techniques used. At each such processor configuration point,
an oracle! built into the simulator provided the scheduling decision, one by one, for cach executed
instruction. In other words. for a given processor configuration, the simulator had functionality built
into it to determine the earliest possible schedule for cach executed instruction of the program.

For each program, the finat schedule of instructions generated by the simulator showed how the
program would execute on a processor having the given configuration, as defined by the techniques
used to exploit instruction levcl parallelism. The degree of parallelism obtained was then calculated
from the simulation result.

0211 the world of ancient Grezce. an oracle was a power which could predict future events; one well-known and presum-
ably reliable oracle was at the temple of Delphi.

Instruction Level Parallelism — 621

For example, suppose one of the programs listed in Table 12.1 exccuted thirty mitlion instructions,
as seen from its execution trace. Suppose further that, for a given processor configuration, these
instructions could be packed into six million processor cycles. Then the average degrec of parallelism
obtained for this program, for this particular processor contfiguration. would be 30/6 = 5.

Techniques Explored The range of techniques which was cxplored :n the study to detect and exploit
instruction level parallelism is summarized briefly below:

Register renaming—with (a) infinite number of registers as renaming targets, {b) finite number of
registers, and () no register renaming.

Alias analysis—with (a) perfect alias analysis, (b} two intermediate levels of alias analysis, and
(¢} no alias analysis,

Branch prediction-—with (a) perfect branch pradiction, (b) three hardware-based branch prediction
schemes, (c) three profile-based branch prediction schemes. and (d) no branch prediction. Hardware
predictors used a combination of local and global tables. with different total table sizes. Some branch
fanout limits were also applied.

Indirect jump prediction—with (a) perfect prediction, (b) intermediate level of prediction, and
(¢) no indirect jump prediction.

Window size—for some of the processor models, different window sizes from an upper limit of 2048
instructions down to 4 instructions were used.

Cyele width, i.e. the maximaom number of insiructions which can be issued in one cycle—(a) 64,
{b) 128, and (¢} bounded only by window size. Note that, from a practical point of view, cycle widths
of both 64 and 128 are on the high side.

Latencies of processor operations— five different latency models were used, specifying latencies (in
number of clock cycles) for various processor operations.

Loop unrolling—was carried out in some of the programs.

Misprediction penalty—values of 0 to 10 clock cycles were used.

Conclusions Reached With 18 programs and more than 350 processor configurations, it should come
as no surprise to the student that Wall’s research generated copious results. These results are presented
systematically in the full report, which is available on the web. For our purposes, we summarize below
the main conclusions of the report.

For the overall degree of paraltelism found. the report says:

Using nontrivial but curvently known techniques, we consistently got parallelism between 4 and 10
for most of the programs in our test suite, Vectorizable or nearly vectorizable programs went much
higher

Branch prediction and speculative execution is :dentified as the major contributor in the exploitation
of instruction level parallelism:

Speculative execution driven by good branch prediction is critical 10 the exploitation of more than
modesi amounts of instruction-level parallelism, Iy we start with the Perfect model and remove branch
prediction, the median parallelism plummets from 30.6 to 2.2 ..

Perfect model in the above excerpt refers to a processor which performs perfect branch prediction,
jump prediction, register renaming, and alias analysis. The student will appreciate readily that this is an
ideal which is impossible to achieve in practice.

627

Advanced Computer Architecture

Overall, Wall’s study reports good results for the degree of parallelism; but the report also goes on
to say that the results are based on ‘rather optimistic: assumptions’. In the actual study, this meant: (i)
as many copies of functional units as needed. {ii) a perfect memory system with no cache misses, (iil)
no penalty for missed predictions, and (iv) no speed penalty of the overhead for aggressive pursuit of
instruction level parallelism.

Clearly no real hardware processor can satisfy such ideal assumptions. After listing some more
factors which lead to optimistic results, the report concludes:

Any one of these considerations could reduce the expected payoff of an instruction-parallel machine
by a third: together they could eliminate it completely.

The broad conclusion of Wall’s research study therefore certainly seems to support the proverb
quoted at the start of this section.

In Chapter 13, we shall review recent advances in technology which have had a major impact on
processor design, and we shall also Jook at some specific commercial products introduced in recent
years. We shall see that the basic techniques and trade-offs discussed in this chapter are reflected, in one
form or another, in the processors and systems-on-a-chip introduced in recent years.

Table 12.1 Programs included in Wall's study

Name of program Function performed No. of instructions executed
(millions}
sed Stream editor 1.46
egrep File search 13.72
yacc Compiler-compiler 30.29
metronome Timing verifier 71.27
Grr PCB router 144.44
Eco Recursive tree comparison 27.39
geel - First pass GNU C compiler 22,75
Espresso Boolean funclion minimizer 134.43
Li Lisp interpreter 263.74
Fpppp Quantum chemistry benchmark 244.27
Doduc Hyvdrocode simulation 284.42
Tomgcatv h Vectorized mesh generation 301.62
hydro2d Astrophysical simulation 823
Compress - Lempel-Ziv file compression 88.27
Ora Ray tracing 212,12
swm256 Shaltow water simulation 301.40
alvinn o Neural network training 388.97
mdljsp2 Molecular dynamics model 393.07

Instruction Level Parallelism - 623

(12.12]| THREAD LEVEL PARALLELISM

We have already seen that dependenczs amongst machine instructions limit the amount of
instruction level parallelism which is available to be exploited within the processor. The
dependences may be true data dependences {RAW), control dependences introduced by conditional branch
Instructions, or resource dcpendences[13 1

One way to reduce the burden of dependences is to combine—with hardware support within the
processor -—instructions from multiple independent threads of execution. Such hardware support for multi-
threading would provide the processor with a pool of instructions, in varicus stages of execution, which have
a relatively smaller number of dependences amongst them, since the threads are independent of one another,

Let us consider once again the processor with instruction prpeline of depth eight, and with targeted
superscalar performance of four instructions completed in every clock cyele (see Section 12.11). Now
suppose that these instructions come from four independent threads of cxccution. Then, on average, the
number of instructions in the processor at any one tima from one thread would be 4 x 8/4 = 8.

With the threads being independent of one another, there is i smaller total number of data dependences
amongst the instructions in the processor. Further, with controt dependences also being separated into four
threads, less aggressive branch prediction is needed.

Another major benefit of such hardware-supported multi-threading is that pipeline stalls are very effectively
utilized. If one thread runs into a pipeline stall—for access to main memory, say —then another thread makes
use of the corresponding processor clock cycles, which would otherwise be wasted. Thus hardware support
for multi-threading becomes an important latency hiding technique.

To provide support for multi-threading, the processor must be designed to switch between threads—either
on the occurrence of a pipeline stall, or in a round robin manner. As in the case of the operating system
switching between running processes, in this case the hardware context of a thread within the processor must
be preserved.

But in this case what exactly is the meaning of the conrext of a thread!

Basically, thread context includes the full set of registers (progranumable registers and those used in
register renaming), PC, stack pointer, relevant memory map information, pretection bits, interrupt control
bits, etc. For N-way multi-threading support, the processor musl store a1 one time the thread contexts of ¥
executing threads. When the processor switches, say, from thread A to thread B, control logic ensures that
execution of subsequent instruction(s) occurs with reference to the context of thread B.

Note that thread contexts need not be saved and later restored. As long as the processor preserves within
itself multiple thread contexts, all that is required is that the processor be able to switch between thread
contexts from one clock cycle to the next.

As we saw in the previous section, there are limits on the amount of fnstruction level parallelism which can
be extracted from a single stream of executing instructions—i.¢. a single thread. But, with steady advances in
VLSI technology, the aggregate amount of functionality that can be built into a single chip has been growing
steadily.

31 A5 discussed above, we assume that WAR and WAW dependences can be handled using some form of register
renaming.

624 St Advanced Computer Architecture

Therefore hardware support for multi-threading—as well as the provision of multiple processor cores on a
single chip-—can both be scen as natural consequences of the steady advances in VLSI technology. Both these
developments address the needs of important segments of modern computer applications and workloads.

Depending on the specific strategy adopted for switching between threads, hardware support for multi-
threading may be classified as one of the following:

(i) Coarse-grain mulii-threading refers w switching between threads only on the occurrence of a major
pipeline stall—which may be caused by, say, access to main memory, with latencies of the order of a
hundred processor clock cycles.

(il) Fine-grain multi-threading refers 1o switching between threads on the occurrence of any pipeline
stall. which may be caused by. say. L1 cache miss. But this term would alse apply to designs in which
processor chock cycles are regularly being shared amongst executing threads, even in the absence of a
pipeline stail.

{iil) Simultancous multi-threading refers to machine instructions from two (or more) threads being issued
in parallel in each processor_clock cycle. This would correspond to a multiple-issue processor where
the multiple instructions issued in a clock cycle come from an equal number of independent execution
threads.

With increasing power of VLSI technolegy, the development of multi-core svsiems-on-a-chip (SoCs) was
also incvitable, since there are practical limits to the number of threads a single processor core can support,
Each core on the Sun UlttaSpare T2, for example, supports eight-way fine-grain multi-threading, and the
chip has cight such cores. Multi-core chips promise higher net processing performance per watt of power
consumption,

Systems-on-a-chip are examples of fascinating design trade-offs and the technical issues which have been
discussed in this chapter. Of course, we have discussed here only the basic design issues and technigues. For
any actual task of processor desigu. it is necessary to make many design choices and trade-offs, validate the
design using simulations. and then finally complete the design in detail to the level of logic circuits.

Over the last couple of decades. enormous advances have taken place in various areas of computer
technology; these advances have had a major impacl on processor and system design. In the next chapter,
we shall discuss in some detail these advances and their impact on processor and system design. We shall
also study in brief several commercial products, as case studies in how actual processors and systems are
designed.

Summary

Processor design—or the choice of a processor from amongst several alternatives—is the central
element of computer system design. Since system design can only be carried out with specific target
application loads in mind, it follows that processor design should also be tailored for target application
loads. To satisfy the overall system performance criteria, various elements of the system must be balanced
in terms of their performance—-i.e. no element of the system should become a performance bottleneck.

Instruction lLevel Parallelism . 625

One of the main processor design trade-offs faced in this context is this: Should the processor be
designed to squeeze the maximum possible parailelism from a single thread, or should processor hardware
support multiple independent threads, with less aggressive exploitation of instruction level paralielism
within each thread? In this chapter, we studied the various standard techniques for exploiting instruction
level parallelism, and also discussed some of the related design issues and trade-offs.

Dependences amongst instructions make up the main constraint in the exploitation of instruction
level parallelism.Therefore, in its essence, the probiem here can be defined as: executing a given sequence
of machine instructions in the smallest possible number of processor clock cycles, while respecting
the true dependences which exist amongst the instructions. To study possible solutions, we looked at
two possible prototype processors: one provided with a reorder buffer, and the other with reservation
stations associated with its various functional units.

In theory, compiler-detected instruction level parallelism should simplify greatly the issues to be
addressed by processor hardware. This is because, in theory, the compiler would do the difficult work of
dependence analysis and instruction scheduling. Processor hardware would then be ‘dumb and fast'—it
would simply execute at a high speed the machine instructions which specify parallel operations. However,
many types of runtime events—such as interrupts and cache misses—cannot be predicted at compile
time. Processor hardware must therefore provide for dynamic scheduling to exploit instruction level
parallelism, limiting the value of what the compiler alone can achieve.

Operand forwarding is a hardware technique to transfer a required operand to multiple destinations
in parallel,in one clock cycle, over the common data bus—thus avoiding sequential transfers over muitiple
clock cycles. To achieve this, it is necessary that processor hardware should dynamically detect and
exploit such potential parallelism in data transfers. The benefits lie in reduced wait time in functional units,
and better utilization of the common data bus, which is an important hardware resource.

A reorder buffer is a simple mechanism to commit instructions in program order, even if their
corresponding operations complete out of order within the processor. Within the reorder buffer,
instructions are queued in program order with four typical fields for each instruction—instruction
identifier, value computed, program-specified destination of the value computed, and a flag indicating
whether the instruction has completed. This simple technique ensures that program state and processor
state are correctly preserved, but does not resolve WAR and WAW dependences within the instructions.

Register renaming is a clever technique to resolve WAR and WAW dependences within the instruction
stream. This is done by re-mapping source and target programmable registers of executing machine
instructions to a larger set of program-invisible registers; thereby the second instruction of a WAR
or WAW dependence does not write to the same register which is used by the first instruction. The
renaming is done dynamically, without any performance penalty in clock cycles.

Tomasulo's algorithm was developed originally for the IBM 369/91 processor, which was designed
for intensive scientific and engineering applications. Operand forwarding is achieved using source tags,
which are also sent on the common data bus along with the operand value. Use of reservation stations
with functional units provides an effective register renaming mechanism which resolves WAR and WAW
dependences.

About 15% to 20% of instructions in a typical machine language program are branch and jump
instructions. Therefore for any pipelined processor—but especially for a superscalar processor—branch

626" W

Advanced Computer Architecture

prediction and speculative execution are critical to achieving targeted performance. A simple two-bit
counter for every branch instruction can serve as a basis for branch prediction; using 2 combination of
focal and global branch prediction, more elaborate schemes can be devised.

Limitations in exploiting greater degree of instruction leve| parallelismarise from the increased overhead
in the required control logic. The limitations may apply to achievable clock rates, power consumption,
or the actual processor utifization achieved while running application programs. Thread-level parahielism
allows processor resources to be shared amongst multiple independent threads executing at one time.
For the target application, processor designers must choose the right combination of instruction level
parallelism, thread-level parallelism, and multiple processor cores on a chip. - :

013

Exercises

Problem 12.1 Define in brief the meaning of
computer architecture; within the scope of that
meaning, explain in brief the role of processor design.

Problem 12.2

(a) VWhen can we say that a computer system is
balanced with respect to its performance?

{b) Ina particular computer system, the designers
suspect that the read/write bandwidth of the
main memory has become the performance
bottleneck. Describe in brief the type of
test program you would need to run on
the system, and the type of measurements
you would need to make, to verify whether
main memory bandwidth is indeed the
performance bottleneck. You may make
additional assumptions about the system if
you can justify the assumptions.

Problem 12.3 Recall that, in the example system
shown in Fig. 12.1, the bandwidth of the shared
processor-memory bus is a performance bottleneck.
Assume now that this bandwidth is increased by
a factor of six. Discuss in brief the likely effect of
this increase on system performance. After this
change is made, is there a likelihood that some other
subsystem becomes the performance bottleneck?

Problem 12.4 Explain in brief some of the basic
design issues and trade-offs faced in processor
design, and the role of VLS| technology selected for
building the processor.

Problem 12.5 Explain in brief the significance of
(i) processor state, (i) program state, and (iii) committing
an executed instruction.

Problem 12.6

(a) Explain in brief, with one example each, the
various types of dependences which must
be considered in the process of exploiting
instruction level parallelism.

(b) Define in brief the problem of exploiting
instruction level paralielism in a single
sequence of executing instructions.

Problem 12.7 With static instruction scheduling
by the compiler, the processor designer does not
need to provide for dynamic scheduling in hardware.
Is this statement true or false? Justify your answer
in brief.

Problem 12.8 Describe in brief the structure of
the reorder buffer, and the functions which it can
and cannot perform in the process of exploiting
instruction level parallelism.

Instruction Level Parallelism

- 7

Note for Exercises 9 to 15
The following three sequences of machine instructions are to be used for Exercises 9 to 15. Note
that instructions other than LOAD and STORE have three operands each; from left to right they are,
respectively, source 1, source 2 and destination.'#’ sign indicates an immediate operand,
Assume that (a) one instruction is issued per clock cycle, (b) no resource constraints limit instruction
level parallefism, (c) floating point operations take two clock cycles each to execute, and (d) foad/store
memory operations take one clock cycle each when there is L1 cache hit.
Segquence 1: 1 LOAD mem-a, R1

2 LOAD mem-b, R2

3 LOAD mem-~c, R3

4 FADD R2, R1, R1

5 FSUB R3, R1, Rl

6 STCORE mem-a, R1
Sequence Z2: 1 LOAD mem=-a, R1

2 FADD RZ, R1, RI1

3 STORE mem-a, Rl

4 FADD #1, R3, R2

5 STORE mem~d, R2

6 LOAD mem-e, R2
Sequence 3: 1 LOAD mem-a, RI1

2 FADD R1, R2, R2

3 STORE mem-b, RZ

4 FADD #1, R3, RZ

5 STORE mem-d, R2

6 LOAD mem-&, R2

Problem 12.9 Draw dependence graphs of the
above sequences of machine instructions, marking
on them the type of data dependences, with the
respective registers involved.

Problem 12.10 Assume that the processor has
no provision for register renaming and operand
forwarding, and that all memory references are
satisfied from L1 cache. Determine the number of
clock cycies it takes to execute the above sequences
of instructions, counting from the last clock cycle of
instruction 1.

Problem 12,11 Now assume that register
renaming is implemented to resolve WAR and WAW
dependences. Determine the number of clock
cycles it takes to execute the above sequences of
Instructions, counting from the last clock cycle of
instruction 1.

Problem 12.12 Comment on the scope for
operand forwarding within the sequences of
instructions. Assume that the load/store unit can also
take part in operand forwarding.

628

Problem 12.13 Assume that, in addition to
register renaming, operand forwarding is also
implemented as discussed in Exercise 12. Determine
the number of clock cycles it takes to execute the
above sequences of instructions, counting from the
last clock cycle of instruction 1.

Problem 12.14 Consider your answers to
Exercises 10, 11 and 13 above. Explain in brief how
these answers would be affected if an L1 cache miss
occurs in instruction 1, which takes five clock cycles
to satisfy from L2 cache.

Problem 12.15 With reference to Exercise
13, describe in brief how Tomasulo’s algorithm
would implement register renaming and operand
forwarding.

Problem 12.16 Explain in brief the meaning of
alias analysis as applied to runtime memory addresses.

Problem 12.17 A particular processor makes
use of a 2-bit predictor for each branch. Based on a
program execution trace, the actual branch behavior
at a particular conditional branch instruction is
found to be as follows:

TT.TNTT. TN .

k times k times

Here T stands for branch taken, and N stands for
branch not taken. In other words, the actual branch
behavior forms a repeating sequence, such that the
branch is taken k times (T), then not taken once (N).

Advanced Computer Architecture

With the 2-bit branch predictor, find fraction of
correct branch predictions made if k = 1,k = 2,k=5
and k=50

Problem 12.18 Discuss in brief the difference
between local and global branch prediction strategies,
and how a two-bit selector may be used per branch
to select between the two.

Problem 12.19

(a) Wall's study on instruction level parallelism is
based on oracle-driven trace-based simulation.
Explain in brief what is meant by this type of
simulation.

(b) Wall’s study of instruction level parallelism
makes certain ‘optimistic’ assumptions about
processor hardware What are these assump-
tions? Against each of these assumptions,
list the corresponding ‘realistic’ assumption
which we should make. keeping in view the
characteristics of real processors.

Problem 12.20 Discuss in brief the basic trade-off
in processor design between exploiting instruction
level parallelism in a single executing thread, and
providing hardware support for multiple threads.

Problem 12.21 Describe in brief what is mean
by the context of a thread, and what are the typical
operations involved in switching between threads.

Problem 12.22 Describe in brief the different
strategies which can be considered for switching
between threads in a processor which provides
hardware support for multi-threading.

